* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: addchild(node(y,ys),node(n,xs)) -> node(y,cons(node(n,xs),ys)) f(node(s(n),xs)) -> f(addchild(select(xs),node(n,xs))) select(cons(ap,xs)) -> ap select(cons(ap,xs)) -> select(xs) - Signature: {addchild/2,f/1,select/1} / {cons/2,node/2,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {addchild,f,select} and constructors {cons,node,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: addchild(node(y,ys),node(n,xs)) -> node(y,cons(node(n,xs),ys)) f(node(s(n),xs)) -> f(addchild(select(xs),node(n,xs))) select(cons(ap,xs)) -> ap select(cons(ap,xs)) -> select(xs) - Signature: {addchild/2,f/1,select/1} / {cons/2,node/2,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {addchild,f,select} and constructors {cons,node,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: select(y){y -> cons(x,y)} = select(cons(x,y)) ->^+ select(y) = C[select(y) = select(y){}] WORST_CASE(Omega(n^1),?)