* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            addchild(node(y,ys),node(n,xs)) -> node(y,cons(node(n,xs),ys))
            f(node(s(n),xs)) -> f(addchild(select(xs),node(n,xs)))
            select(cons(ap,xs)) -> ap
            select(cons(ap,xs)) -> select(xs)
        - Signature:
            {addchild/2,f/1,select/1} / {cons/2,node/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {addchild,f,select} and constructors {cons,node,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            addchild(node(y,ys),node(n,xs)) -> node(y,cons(node(n,xs),ys))
            f(node(s(n),xs)) -> f(addchild(select(xs),node(n,xs)))
            select(cons(ap,xs)) -> ap
            select(cons(ap,xs)) -> select(xs)
        - Signature:
            {addchild/2,f/1,select/1} / {cons/2,node/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {addchild,f,select} and constructors {cons,node,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          select(y){y -> cons(x,y)} =
            select(cons(x,y)) ->^+ select(y)
              = C[select(y) = select(y){}]

WORST_CASE(Omega(n^1),?)