* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
addchild(node(y,ys),node(n,xs)) -> node(y,cons(node(n,xs),ys))
f(node(s(n),xs)) -> f(addchild(select(xs),node(n,xs)))
select(cons(ap,xs)) -> ap
select(cons(ap,xs)) -> select(xs)
- Signature:
{addchild/2,f/1,select/1} / {cons/2,node/2,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {addchild,f,select} and constructors {cons,node,s}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
addchild(node(y,ys),node(n,xs)) -> node(y,cons(node(n,xs),ys))
f(node(s(n),xs)) -> f(addchild(select(xs),node(n,xs)))
select(cons(ap,xs)) -> ap
select(cons(ap,xs)) -> select(xs)
- Signature:
{addchild/2,f/1,select/1} / {cons/2,node/2,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {addchild,f,select} and constructors {cons,node,s}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
select(y){y -> cons(x,y)} =
select(cons(x,y)) ->^+ select(y)
= C[select(y) = select(y){}]
WORST_CASE(Omega(n^1),?)