* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
+ Considered Problem:
- Strict TRS:
-(x,0()) -> x
-(0(),s(y)) -> 0()
-(s(x),s(y)) -> -(x,y)
div(x,0()) -> 0()
div(0(),y) -> 0()
div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
if(false(),x,y) -> y
if(true(),x,y) -> x
lt(x,0()) -> false()
lt(0(),s(y)) -> true()
lt(s(x),s(y)) -> lt(x,y)
- Signature:
{-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
-(x,0()) -> x
-(0(),s(y)) -> 0()
-(s(x),s(y)) -> -(x,y)
div(x,0()) -> 0()
div(0(),y) -> 0()
div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
if(false(),x,y) -> y
if(true(),x,y) -> x
lt(x,0()) -> false()
lt(0(),s(y)) -> true()
lt(s(x),s(y)) -> lt(x,y)
- Signature:
{-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
-(x,y){x -> s(x),y -> s(y)} =
-(s(x),s(y)) ->^+ -(x,y)
= C[-(x,y) = -(x,y){}]
** Step 1.b:1: WeightGap WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict TRS:
-(x,0()) -> x
-(0(),s(y)) -> 0()
-(s(x),s(y)) -> -(x,y)
div(x,0()) -> 0()
div(0(),y) -> 0()
div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
if(false(),x,y) -> y
if(true(),x,y) -> x
lt(x,0()) -> false()
lt(0(),s(y)) -> true()
lt(s(x),s(y)) -> lt(x,y)
- Signature:
{-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(div) = {1},
uargs(if) = {1,3},
uargs(s) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(-) = [1] x1 + [1]
p(0) = [4]
p(div) = [1] x1 + [1] x2 + [7]
p(false) = [0]
p(if) = [1] x1 + [1] x2 + [1] x3 + [0]
p(lt) = [0]
p(s) = [1] x1 + [0]
p(true) = [0]
Following rules are strictly oriented:
-(x,0()) = [1] x + [1]
> [1] x + [0]
= x
-(0(),s(y)) = [5]
> [4]
= 0()
div(x,0()) = [1] x + [11]
> [4]
= 0()
div(0(),y) = [1] y + [11]
> [4]
= 0()
Following rules are (at-least) weakly oriented:
-(s(x),s(y)) = [1] x + [1]
>= [1] x + [1]
= -(x,y)
div(s(x),s(y)) = [1] x + [1] y + [7]
>= [1] x + [1] y + [12]
= if(lt(x,y),0(),s(div(-(x,y),s(y))))
if(false(),x,y) = [1] x + [1] y + [0]
>= [1] y + [0]
= y
if(true(),x,y) = [1] x + [1] y + [0]
>= [1] x + [0]
= x
lt(x,0()) = [0]
>= [0]
= false()
lt(0(),s(y)) = [0]
>= [0]
= true()
lt(s(x),s(y)) = [0]
>= [0]
= lt(x,y)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict TRS:
-(s(x),s(y)) -> -(x,y)
div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
if(false(),x,y) -> y
if(true(),x,y) -> x
lt(x,0()) -> false()
lt(0(),s(y)) -> true()
lt(s(x),s(y)) -> lt(x,y)
- Weak TRS:
-(x,0()) -> x
-(0(),s(y)) -> 0()
div(x,0()) -> 0()
div(0(),y) -> 0()
- Signature:
{-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(div) = {1},
uargs(if) = {1,3},
uargs(s) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(-) = [1] x1 + [0]
p(0) = [0]
p(div) = [1] x1 + [8] x2 + [1]
p(false) = [0]
p(if) = [1] x1 + [1] x2 + [1] x3 + [9]
p(lt) = [8]
p(s) = [1] x1 + [0]
p(true) = [7]
Following rules are strictly oriented:
if(false(),x,y) = [1] x + [1] y + [9]
> [1] y + [0]
= y
if(true(),x,y) = [1] x + [1] y + [16]
> [1] x + [0]
= x
lt(x,0()) = [8]
> [0]
= false()
lt(0(),s(y)) = [8]
> [7]
= true()
Following rules are (at-least) weakly oriented:
-(x,0()) = [1] x + [0]
>= [1] x + [0]
= x
-(0(),s(y)) = [0]
>= [0]
= 0()
-(s(x),s(y)) = [1] x + [0]
>= [1] x + [0]
= -(x,y)
div(x,0()) = [1] x + [1]
>= [0]
= 0()
div(0(),y) = [8] y + [1]
>= [0]
= 0()
div(s(x),s(y)) = [1] x + [8] y + [1]
>= [1] x + [8] y + [18]
= if(lt(x,y),0(),s(div(-(x,y),s(y))))
lt(s(x),s(y)) = [8]
>= [8]
= lt(x,y)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict TRS:
-(s(x),s(y)) -> -(x,y)
div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
lt(s(x),s(y)) -> lt(x,y)
- Weak TRS:
-(x,0()) -> x
-(0(),s(y)) -> 0()
div(x,0()) -> 0()
div(0(),y) -> 0()
if(false(),x,y) -> y
if(true(),x,y) -> x
lt(x,0()) -> false()
lt(0(),s(y)) -> true()
- Signature:
{-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(div) = {1},
uargs(if) = {1,3},
uargs(s) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(-) = [1] x1 + [8]
p(0) = [0]
p(div) = [1] x1 + [1] x2 + [1]
p(false) = [0]
p(if) = [1] x1 + [2] x2 + [1] x3 + [8]
p(lt) = [0]
p(s) = [1] x1 + [2]
p(true) = [0]
Following rules are strictly oriented:
-(s(x),s(y)) = [1] x + [10]
> [1] x + [8]
= -(x,y)
Following rules are (at-least) weakly oriented:
-(x,0()) = [1] x + [8]
>= [1] x + [0]
= x
-(0(),s(y)) = [8]
>= [0]
= 0()
div(x,0()) = [1] x + [1]
>= [0]
= 0()
div(0(),y) = [1] y + [1]
>= [0]
= 0()
div(s(x),s(y)) = [1] x + [1] y + [5]
>= [1] x + [1] y + [21]
= if(lt(x,y),0(),s(div(-(x,y),s(y))))
if(false(),x,y) = [2] x + [1] y + [8]
>= [1] y + [0]
= y
if(true(),x,y) = [2] x + [1] y + [8]
>= [1] x + [0]
= x
lt(x,0()) = [0]
>= [0]
= false()
lt(0(),s(y)) = [0]
>= [0]
= true()
lt(s(x),s(y)) = [0]
>= [0]
= lt(x,y)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: MI WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict TRS:
div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
lt(s(x),s(y)) -> lt(x,y)
- Weak TRS:
-(x,0()) -> x
-(0(),s(y)) -> 0()
-(s(x),s(y)) -> -(x,y)
div(x,0()) -> 0()
div(0(),y) -> 0()
if(false(),x,y) -> y
if(true(),x,y) -> x
lt(x,0()) -> false()
lt(0(),s(y)) -> true()
- Signature:
{-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
+ Applied Processor:
MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
+ Details:
We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
The following argument positions are considered usable:
uargs(div) = {1},
uargs(if) = {1,3},
uargs(s) = {1}
Following symbols are considered usable:
{-,div,if,lt}
TcT has computed the following interpretation:
p(-) = [1] x_1 + [0]
p(0) = [0]
p(div) = [2] x_1 + [9] x_2 + [0]
p(false) = [0]
p(if) = [8] x_1 + [2] x_2 + [1] x_3 + [0]
p(lt) = [0]
p(s) = [1] x_1 + [1]
p(true) = [0]
Following rules are strictly oriented:
div(s(x),s(y)) = [2] x + [9] y + [11]
> [2] x + [9] y + [10]
= if(lt(x,y),0(),s(div(-(x,y),s(y))))
Following rules are (at-least) weakly oriented:
-(x,0()) = [1] x + [0]
>= [1] x + [0]
= x
-(0(),s(y)) = [0]
>= [0]
= 0()
-(s(x),s(y)) = [1] x + [1]
>= [1] x + [0]
= -(x,y)
div(x,0()) = [2] x + [0]
>= [0]
= 0()
div(0(),y) = [9] y + [0]
>= [0]
= 0()
if(false(),x,y) = [2] x + [1] y + [0]
>= [1] y + [0]
= y
if(true(),x,y) = [2] x + [1] y + [0]
>= [1] x + [0]
= x
lt(x,0()) = [0]
>= [0]
= false()
lt(0(),s(y)) = [0]
>= [0]
= true()
lt(s(x),s(y)) = [0]
>= [0]
= lt(x,y)
** Step 1.b:5: NaturalPI WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict TRS:
lt(s(x),s(y)) -> lt(x,y)
- Weak TRS:
-(x,0()) -> x
-(0(),s(y)) -> 0()
-(s(x),s(y)) -> -(x,y)
div(x,0()) -> 0()
div(0(),y) -> 0()
div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
if(false(),x,y) -> y
if(true(),x,y) -> x
lt(x,0()) -> false()
lt(0(),s(y)) -> true()
- Signature:
{-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
+ Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
+ Details:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(div) = {1},
uargs(if) = {1,3},
uargs(s) = {1}
Following symbols are considered usable:
{-,div,if,lt}
TcT has computed the following interpretation:
p(-) = x1
p(0) = 0
p(div) = x1 + x1^2
p(false) = 1
p(if) = x1 + x1*x2 + x2 + x3
p(lt) = 1 + x1
p(s) = 1 + x1
p(true) = 0
Following rules are strictly oriented:
lt(s(x),s(y)) = 2 + x
> 1 + x
= lt(x,y)
Following rules are (at-least) weakly oriented:
-(x,0()) = x
>= x
= x
-(0(),s(y)) = 0
>= 0
= 0()
-(s(x),s(y)) = 1 + x
>= x
= -(x,y)
div(x,0()) = x + x^2
>= 0
= 0()
div(0(),y) = 0
>= 0
= 0()
div(s(x),s(y)) = 2 + 3*x + x^2
>= 2 + 2*x + x^2
= if(lt(x,y),0(),s(div(-(x,y),s(y))))
if(false(),x,y) = 1 + 2*x + y
>= y
= y
if(true(),x,y) = x + y
>= x
= x
lt(x,0()) = 1 + x
>= 1
= false()
lt(0(),s(y)) = 1
>= 0
= true()
** Step 1.b:6: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
-(x,0()) -> x
-(0(),s(y)) -> 0()
-(s(x),s(y)) -> -(x,y)
div(x,0()) -> 0()
div(0(),y) -> 0()
div(s(x),s(y)) -> if(lt(x,y),0(),s(div(-(x,y),s(y))))
if(false(),x,y) -> y
if(true(),x,y) -> x
lt(x,0()) -> false()
lt(0(),s(y)) -> true()
lt(s(x),s(y)) -> lt(x,y)
- Signature:
{-/2,div/2,if/3,lt/2} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {-,div,if,lt} and constructors {0,false,s,true}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(Omega(n^1),O(n^2))