* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(minus(x)) -> minus(minus(minus(f(x))))
            minus(*(x,y)) -> +(minus(minus(minus(x))),minus(minus(minus(y))))
            minus(+(x,y)) -> *(minus(minus(minus(x))),minus(minus(minus(y))))
            minus(minus(x)) -> x
        - Signature:
            {f/1,minus/1} / {*/2,+/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,minus} and constructors {*,+}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(minus(x)) -> minus(minus(minus(f(x))))
            minus(*(x,y)) -> +(minus(minus(minus(x))),minus(minus(minus(y))))
            minus(+(x,y)) -> *(minus(minus(minus(x))),minus(minus(minus(y))))
            minus(minus(x)) -> x
        - Signature:
            {f/1,minus/1} / {*/2,+/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,minus} and constructors {*,+}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          minus(x){x -> *(x,y)} =
            minus(*(x,y)) ->^+ +(minus(minus(minus(x))),minus(minus(minus(y))))
              = C[minus(x) = minus(x){}]

WORST_CASE(Omega(n^1),?)