* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
f(minus(x)) -> minus(minus(minus(f(x))))
minus(*(x,y)) -> +(minus(minus(minus(x))),minus(minus(minus(y))))
minus(+(x,y)) -> *(minus(minus(minus(x))),minus(minus(minus(y))))
minus(minus(x)) -> x
- Signature:
{f/1,minus/1} / {*/2,+/2}
- Obligation:
innermost runtime complexity wrt. defined symbols {f,minus} and constructors {*,+}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
f(minus(x)) -> minus(minus(minus(f(x))))
minus(*(x,y)) -> +(minus(minus(minus(x))),minus(minus(minus(y))))
minus(+(x,y)) -> *(minus(minus(minus(x))),minus(minus(minus(y))))
minus(minus(x)) -> x
- Signature:
{f/1,minus/1} / {*/2,+/2}
- Obligation:
innermost runtime complexity wrt. defined symbols {f,minus} and constructors {*,+}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
minus(x){x -> *(x,y)} =
minus(*(x,y)) ->^+ +(minus(minus(minus(x))),minus(minus(minus(y))))
= C[minus(x) = minus(x){}]
WORST_CASE(Omega(n^1),?)