* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(true(),x,y) -> f(gt(x,y),x,round(s(y)))
            gt(0(),v) -> false()
            gt(s(u),0()) -> true()
            gt(s(u),s(v)) -> gt(u,v)
            round(0()) -> 0()
            round(s(0())) -> s(s(0()))
            round(s(s(x))) -> s(s(round(x)))
        - Signature:
            {f/3,gt/2,round/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,gt,round} and constructors {0,false,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(true(),x,y) -> f(gt(x,y),x,round(s(y)))
            gt(0(),v) -> false()
            gt(s(u),0()) -> true()
            gt(s(u),s(v)) -> gt(u,v)
            round(0()) -> 0()
            round(s(0())) -> s(s(0()))
            round(s(s(x))) -> s(s(round(x)))
        - Signature:
            {f/3,gt/2,round/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,gt,round} and constructors {0,false,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          gt(x,y){x -> s(x),y -> s(y)} =
            gt(s(x),s(y)) ->^+ gt(x,y)
              = C[gt(x,y) = gt(x,y){}]

WORST_CASE(Omega(n^1),?)