* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) lt0(Nil(),Cons(x',xs)) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) - Weak TRS: f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) - Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0 ,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0 ,notEmpty,number4} and constructors {Cons,False,Nil,True} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) lt0(Nil(),Cons(x',xs)) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) - Weak TRS: f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) - Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0 ,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0 ,notEmpty,number4} and constructors {Cons,False,Nil,True} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: lt0(y,u){y -> Cons(x,y),u -> Cons(z,u)} = lt0(Cons(x,y),Cons(z,u)) ->^+ lt0(y,u) = C[lt0(y,u) = lt0(y,u){}] ** Step 1.b:1: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) lt0(Nil(),Cons(x',xs)) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) - Weak TRS: f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) - Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0 ,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0 ,notEmpty,number4} and constructors {Cons,False,Nil,True} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(f[Ite][False][Ite]) = {1}, uargs(g[Ite][False][Ite]) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [2] p(False) = [4] p(Nil) = [1] p(True) = [6] p(f) = [1] x1 + [6] p(f[Ite][False][Ite]) = [1] x1 + [1] x2 + [0] p(g) = [2] p(g[Ite][False][Ite]) = [1] x1 + [0] p(goal) = [4] x1 + [1] x2 + [0] p(lt0) = [0] p(notEmpty) = [4] x1 + [0] p(number4) = [0] Following rules are strictly oriented: f(x,Cons(x',xs)) = [1] x + [6] > [1] x + [0] = f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Cons(x',xs)) = [2] > [0] = g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) notEmpty(Cons(x,xs)) = [4] x + [4] xs + [8] > [6] = True() Following rules are (at-least) weakly oriented: f(x,Nil()) = [1] x + [6] >= [13] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) = [1] x + [1] xs + [6] >= [1] xs + [6] = f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) = [1] x' + [6] >= [1] x' + [6] = f(x',xs) g(x,Nil()) = [2] >= [13] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False(),Cons(x,xs),y) = [4] >= [2] = g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) = [6] >= [2] = g(x',xs) goal(x,y) = [4] x + [1] y + [0] >= [1] x + [13] = Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) = [0] >= [4] = False() lt0(Cons(x',xs'),Cons(x,xs)) = [0] >= [0] = lt0(xs',xs) lt0(Nil(),Cons(x',xs)) = [0] >= [6] = True() notEmpty(Nil()) = [4] >= [4] = False() number4(n) = [0] >= [13] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:2: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) lt0(Nil(),Cons(x',xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) - Weak TRS: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) notEmpty(Cons(x,xs)) -> True() - Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0 ,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0 ,notEmpty,number4} and constructors {Cons,False,Nil,True} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(f[Ite][False][Ite]) = {1}, uargs(g[Ite][False][Ite]) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [0] p(False) = [7] p(Nil) = [2] p(True) = [2] p(f) = [3] x1 + [1] x2 + [1] p(f[Ite][False][Ite]) = [1] x1 + [3] x2 + [1] x3 + [0] p(g) = [3] p(g[Ite][False][Ite]) = [1] x1 + [2] p(goal) = [4] x1 + [1] x2 + [7] p(lt0) = [0] p(notEmpty) = [2] x1 + [5] p(number4) = [2] Following rules are strictly oriented: goal(x,y) = [4] x + [1] y + [7] > [3] x + [1] y + [6] = Cons(f(x,y),Cons(g(x,y),Nil())) notEmpty(Nil()) = [9] > [7] = False() Following rules are (at-least) weakly oriented: f(x,Cons(x',xs)) = [3] x + [1] x' + [1] xs + [1] >= [3] x + [1] x' + [1] xs + [0] = f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) = [3] x + [3] >= [10] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) = [3] x + [3] xs + [1] y + [7] >= [3] xs + [1] y + [5] = f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) = [1] x + [3] x' + [1] xs + [2] >= [3] x' + [1] xs + [1] = f(x',xs) g(x,Cons(x',xs)) = [3] >= [2] = g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) = [3] >= [10] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False(),Cons(x,xs),y) = [9] >= [3] = g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) = [4] >= [3] = g(x',xs) lt0(x,Nil()) = [0] >= [7] = False() lt0(Cons(x',xs'),Cons(x,xs)) = [0] >= [0] = lt0(xs',xs) lt0(Nil(),Cons(x',xs)) = [0] >= [2] = True() notEmpty(Cons(x,xs)) = [2] x + [2] xs + [5] >= [2] = True() number4(n) = [2] >= [10] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) lt0(Nil(),Cons(x',xs)) -> True() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) - Weak TRS: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0 ,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0 ,notEmpty,number4} and constructors {Cons,False,Nil,True} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(f[Ite][False][Ite]) = {1}, uargs(g[Ite][False][Ite]) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [0] p(False) = [0] p(Nil) = [0] p(True) = [0] p(f) = [1] x2 + [5] p(f[Ite][False][Ite]) = [1] x1 + [1] x3 + [5] p(g) = [0] p(g[Ite][False][Ite]) = [1] x1 + [0] p(goal) = [1] x2 + [5] p(lt0) = [1] x2 + [0] p(notEmpty) = [0] p(number4) = [1] x1 + [1] Following rules are strictly oriented: f(x,Nil()) = [5] > [0] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) number4(n) = [1] n + [1] > [0] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) Following rules are (at-least) weakly oriented: f(x,Cons(x',xs)) = [1] x' + [1] xs + [5] >= [1] x' + [1] xs + [5] = f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f[Ite][False][Ite](False(),Cons(x,xs),y) = [1] y + [5] >= [1] y + [5] = f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) = [1] x + [1] xs + [5] >= [1] xs + [5] = f(x',xs) g(x,Cons(x',xs)) = [0] >= [0] = g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) = [0] >= [0] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False(),Cons(x,xs),y) = [0] >= [0] = g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) = [0] >= [0] = g(x',xs) goal(x,y) = [1] y + [5] >= [1] y + [5] = Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) = [0] >= [0] = False() lt0(Cons(x',xs'),Cons(x,xs)) = [1] x + [1] xs + [0] >= [1] xs + [0] = lt0(xs',xs) lt0(Nil(),Cons(x',xs)) = [1] x' + [1] xs + [0] >= [0] = True() notEmpty(Cons(x,xs)) = [0] >= [0] = True() notEmpty(Nil()) = [0] >= [0] = False() Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:4: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) lt0(Nil(),Cons(x',xs)) -> True() - Weak TRS: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) - Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0 ,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0 ,notEmpty,number4} and constructors {Cons,False,Nil,True} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(f[Ite][False][Ite]) = {1}, uargs(g[Ite][False][Ite]) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [0] p(False) = [0] p(Nil) = [0] p(True) = [0] p(f) = [1] p(f[Ite][False][Ite]) = [1] x1 + [1] p(g) = [1] p(g[Ite][False][Ite]) = [1] x1 + [1] p(goal) = [3] x1 + [4] p(lt0) = [1] x2 + [0] p(notEmpty) = [1] p(number4) = [1] x1 + [5] Following rules are strictly oriented: g(x,Nil()) = [1] > [0] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) Following rules are (at-least) weakly oriented: f(x,Cons(x',xs)) = [1] >= [1] = f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) = [1] >= [0] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) = [1] >= [1] = f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) = [1] >= [1] = f(x',xs) g(x,Cons(x',xs)) = [1] >= [1] = g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g[Ite][False][Ite](False(),Cons(x,xs),y) = [1] >= [1] = g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) = [1] >= [1] = g(x',xs) goal(x,y) = [3] x + [4] >= [2] = Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) = [0] >= [0] = False() lt0(Cons(x',xs'),Cons(x,xs)) = [1] x + [1] xs + [0] >= [1] xs + [0] = lt0(xs',xs) lt0(Nil(),Cons(x',xs)) = [1] x' + [1] xs + [0] >= [0] = True() notEmpty(Cons(x,xs)) = [1] >= [0] = True() notEmpty(Nil()) = [1] >= [0] = False() number4(n) = [1] n + [5] >= [0] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:5: MI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) lt0(Nil(),Cons(x',xs)) -> True() - Weak TRS: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) - Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0 ,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0 ,notEmpty,number4} and constructors {Cons,False,Nil,True} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(f[Ite][False][Ite]) = {1}, uargs(g[Ite][False][Ite]) = {1} Following symbols are considered usable: {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4} TcT has computed the following interpretation: p(Cons) = [1] x_1 + [1] x_2 + [1] p(False) = [0] p(Nil) = [0] p(True) = [2] p(f) = [2] x_1 + [4] p(f[Ite][False][Ite]) = [1] x_1 + [2] x_2 + [2] p(g) = [8] x_1 + [8] p(g[Ite][False][Ite]) = [4] x_1 + [8] x_2 + [0] p(goal) = [10] x_1 + [15] p(lt0) = [2] x_2 + [0] p(notEmpty) = [8] x_1 + [15] p(number4) = [1] x_1 + [4] Following rules are strictly oriented: lt0(Cons(x',xs'),Cons(x,xs)) = [2] x + [2] xs + [2] > [2] xs + [0] = lt0(xs',xs) Following rules are (at-least) weakly oriented: f(x,Cons(x',xs)) = [2] x + [4] >= [2] x + [4] = f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) = [2] x + [4] >= [4] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) = [2] x + [2] xs + [4] >= [2] xs + [4] = f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) = [2] x' + [4] >= [2] x' + [4] = f(x',xs) g(x,Cons(x',xs)) = [8] x + [8] >= [8] x + [8] = g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) = [8] x + [8] >= [4] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False(),Cons(x,xs),y) = [8] x + [8] xs + [8] >= [8] xs + [8] = g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) = [8] x' + [8] >= [8] x' + [8] = g(x',xs) goal(x,y) = [10] x + [15] >= [10] x + [14] = Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) = [0] >= [0] = False() lt0(Nil(),Cons(x',xs)) = [2] x' + [2] xs + [2] >= [2] = True() notEmpty(Cons(x,xs)) = [8] x + [8] xs + [23] >= [2] = True() notEmpty(Nil()) = [15] >= [0] = False() number4(n) = [1] n + [4] >= [4] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) ** Step 1.b:6: MI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: lt0(x,Nil()) -> False() lt0(Nil(),Cons(x',xs)) -> True() - Weak TRS: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) - Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0 ,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0 ,notEmpty,number4} and constructors {Cons,False,Nil,True} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(f[Ite][False][Ite]) = {1}, uargs(g[Ite][False][Ite]) = {1} Following symbols are considered usable: {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4} TcT has computed the following interpretation: p(Cons) = [1] x_1 + [1] x_2 + [1] p(False) = [0] p(Nil) = [0] p(True) = [1] p(f) = [8] x_1 + [8] p(f[Ite][False][Ite]) = [8] x_1 + [8] x_2 + [0] p(g) = [1] x_1 + [5] p(g[Ite][False][Ite]) = [1] x_1 + [1] x_2 + [4] p(goal) = [10] x_1 + [15] p(lt0) = [1] p(notEmpty) = [4] p(number4) = [9] Following rules are strictly oriented: lt0(x,Nil()) = [1] > [0] = False() Following rules are (at-least) weakly oriented: f(x,Cons(x',xs)) = [8] x + [8] >= [8] x + [8] = f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) = [8] x + [8] >= [4] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) = [8] x + [8] xs + [8] >= [8] xs + [8] = f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) = [8] x' + [8] >= [8] x' + [8] = f(x',xs) g(x,Cons(x',xs)) = [1] x + [5] >= [1] x + [5] = g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) = [1] x + [5] >= [4] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False(),Cons(x,xs),y) = [1] x + [1] xs + [5] >= [1] xs + [5] = g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) = [1] x' + [5] >= [1] x' + [5] = g(x',xs) goal(x,y) = [10] x + [15] >= [9] x + [15] = Cons(f(x,y),Cons(g(x,y),Nil())) lt0(Cons(x',xs'),Cons(x,xs)) = [1] >= [1] = lt0(xs',xs) lt0(Nil(),Cons(x',xs)) = [1] >= [1] = True() notEmpty(Cons(x,xs)) = [4] >= [1] = True() notEmpty(Nil()) = [4] >= [0] = False() number4(n) = [9] >= [4] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) ** Step 1.b:7: MI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: lt0(Nil(),Cons(x',xs)) -> True() - Weak TRS: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) - Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0 ,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0 ,notEmpty,number4} and constructors {Cons,False,Nil,True} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(f[Ite][False][Ite]) = {1}, uargs(g[Ite][False][Ite]) = {1} Following symbols are considered usable: {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4} TcT has computed the following interpretation: p(Cons) = [1] x_1 + [1] x_2 + [1] p(False) = [0] p(Nil) = [0] p(True) = [1] p(f) = [7] x_1 + [2] x_2 + [9] p(f[Ite][False][Ite]) = [1] x_1 + [7] x_2 + [2] x_3 + [6] p(g) = [8] x_1 + [2] x_2 + [4] p(g[Ite][False][Ite]) = [2] x_1 + [8] x_2 + [2] x_3 + [0] p(goal) = [15] x_1 + [4] x_2 + [15] p(lt0) = [2] x_2 + [0] p(notEmpty) = [3] x_1 + [0] p(number4) = [9] Following rules are strictly oriented: lt0(Nil(),Cons(x',xs)) = [2] x' + [2] xs + [2] > [1] = True() Following rules are (at-least) weakly oriented: f(x,Cons(x',xs)) = [7] x + [2] x' + [2] xs + [11] >= [7] x + [2] x' + [2] xs + [10] = f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) = [7] x + [9] >= [4] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) = [7] x + [7] xs + [2] y + [13] >= [7] xs + [2] y + [13] = f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) = [2] x + [7] x' + [2] xs + [9] >= [7] x' + [2] xs + [9] = f(x',xs) g(x,Cons(x',xs)) = [8] x + [2] x' + [2] xs + [6] >= [8] x + [2] x' + [2] xs + [6] = g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) = [8] x + [4] >= [4] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False(),Cons(x,xs),y) = [8] x + [8] xs + [2] y + [8] >= [8] xs + [2] y + [8] = g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) = [2] x + [8] x' + [2] xs + [4] >= [8] x' + [2] xs + [4] = g(x',xs) goal(x,y) = [15] x + [4] y + [15] >= [15] x + [4] y + [15] = Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) = [0] >= [0] = False() lt0(Cons(x',xs'),Cons(x,xs)) = [2] x + [2] xs + [2] >= [2] xs + [0] = lt0(xs',xs) notEmpty(Cons(x,xs)) = [3] x + [3] xs + [3] >= [1] = True() notEmpty(Nil()) = [0] >= [0] = False() number4(n) = [9] >= [4] = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) ** Step 1.b:8: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y)) f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs) g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs)) g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y)) g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs) goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil())) lt0(x,Nil()) -> False() lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs) lt0(Nil(),Cons(x',xs)) -> True() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil())))) - Signature: {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0 ,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0 ,notEmpty,number4} and constructors {Cons,False,Nil,True} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))