* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil()))
            lt0(x,Nil()) -> False()
            lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs)
            lt0(Nil(),Cons(x',xs)) -> True()
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
        - Weak TRS:
            f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y))
            f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs)
            g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y))
            g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs)
        - Signature:
            {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0
            ,Nil/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0
            ,notEmpty,number4} and constructors {Cons,False,Nil,True}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil()))
            lt0(x,Nil()) -> False()
            lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs)
            lt0(Nil(),Cons(x',xs)) -> True()
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
        - Weak TRS:
            f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y))
            f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs)
            g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y))
            g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs)
        - Signature:
            {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0
            ,Nil/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0
            ,notEmpty,number4} and constructors {Cons,False,Nil,True}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          lt0(y,u){y -> Cons(x,y),u -> Cons(z,u)} =
            lt0(Cons(x,y),Cons(z,u)) ->^+ lt0(y,u)
              = C[lt0(y,u) = lt0(y,u){}]

** Step 1.b:1: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil()))
            lt0(x,Nil()) -> False()
            lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs)
            lt0(Nil(),Cons(x',xs)) -> True()
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
        - Weak TRS:
            f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y))
            f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs)
            g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y))
            g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs)
        - Signature:
            {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0
            ,Nil/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0
            ,notEmpty,number4} and constructors {Cons,False,Nil,True}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(Cons) = {1,2},
            uargs(f[Ite][False][Ite]) = {1},
            uargs(g[Ite][False][Ite]) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                          p(Cons) = [1] x1 + [1] x2 + [2]
                         p(False) = [4]                  
                           p(Nil) = [1]                  
                          p(True) = [6]                  
                             p(f) = [1] x1 + [6]         
            p(f[Ite][False][Ite]) = [1] x1 + [1] x2 + [0]
                             p(g) = [2]                  
            p(g[Ite][False][Ite]) = [1] x1 + [0]         
                          p(goal) = [4] x1 + [1] x2 + [0]
                           p(lt0) = [0]                  
                      p(notEmpty) = [4] x1 + [0]         
                       p(number4) = [0]                  
          
          Following rules are strictly oriented:
              f(x,Cons(x',xs)) = [1] x + [6]                                               
                               > [1] x + [0]                                               
                               = f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
          
              g(x,Cons(x',xs)) = [2]                                                       
                               > [0]                                                       
                               = g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
          
          notEmpty(Cons(x,xs)) = [4] x + [4] xs + [8]                                      
                               > [6]                                                       
                               = True()                                                    
          
          
          Following rules are (at-least) weakly oriented:
                                        f(x,Nil()) =  [1] x + [6]                                          
                                                   >= [13]                                                 
                                                   =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
          
          f[Ite][False][Ite](False(),Cons(x,xs),y) =  [1] x + [1] xs + [6]                                 
                                                   >= [1] xs + [6]                                         
                                                   =  f(xs,Cons(Cons(Nil(),Nil()),y))                      
          
          f[Ite][False][Ite](True(),x',Cons(x,xs)) =  [1] x' + [6]                                         
                                                   >= [1] x' + [6]                                         
                                                   =  f(x',xs)                                             
          
                                        g(x,Nil()) =  [2]                                                  
                                                   >= [13]                                                 
                                                   =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
          
          g[Ite][False][Ite](False(),Cons(x,xs),y) =  [4]                                                  
                                                   >= [2]                                                  
                                                   =  g(xs,Cons(Cons(Nil(),Nil()),y))                      
          
          g[Ite][False][Ite](True(),x',Cons(x,xs)) =  [6]                                                  
                                                   >= [2]                                                  
                                                   =  g(x',xs)                                             
          
                                         goal(x,y) =  [4] x + [1] y + [0]                                  
                                                   >= [1] x + [13]                                         
                                                   =  Cons(f(x,y),Cons(g(x,y),Nil()))                      
          
                                      lt0(x,Nil()) =  [0]                                                  
                                                   >= [4]                                                  
                                                   =  False()                                              
          
                      lt0(Cons(x',xs'),Cons(x,xs)) =  [0]                                                  
                                                   >= [0]                                                  
                                                   =  lt0(xs',xs)                                          
          
                            lt0(Nil(),Cons(x',xs)) =  [0]                                                  
                                                   >= [6]                                                  
                                                   =  True()                                               
          
                                   notEmpty(Nil()) =  [4]                                                  
                                                   >= [4]                                                  
                                                   =  False()                                              
          
                                        number4(n) =  [0]                                                  
                                                   >= [13]                                                 
                                                   =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil()))
            lt0(x,Nil()) -> False()
            lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs)
            lt0(Nil(),Cons(x',xs)) -> True()
            notEmpty(Nil()) -> False()
            number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
        - Weak TRS:
            f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y))
            f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs)
            g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y))
            g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs)
            notEmpty(Cons(x,xs)) -> True()
        - Signature:
            {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0
            ,Nil/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0
            ,notEmpty,number4} and constructors {Cons,False,Nil,True}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(Cons) = {1,2},
            uargs(f[Ite][False][Ite]) = {1},
            uargs(g[Ite][False][Ite]) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                          p(Cons) = [1] x1 + [1] x2 + [0]         
                         p(False) = [7]                           
                           p(Nil) = [2]                           
                          p(True) = [2]                           
                             p(f) = [3] x1 + [1] x2 + [1]         
            p(f[Ite][False][Ite]) = [1] x1 + [3] x2 + [1] x3 + [0]
                             p(g) = [3]                           
            p(g[Ite][False][Ite]) = [1] x1 + [2]                  
                          p(goal) = [4] x1 + [1] x2 + [7]         
                           p(lt0) = [0]                           
                      p(notEmpty) = [2] x1 + [5]                  
                       p(number4) = [2]                           
          
          Following rules are strictly oriented:
                goal(x,y) = [4] x + [1] y + [7]            
                          > [3] x + [1] y + [6]            
                          = Cons(f(x,y),Cons(g(x,y),Nil()))
          
          notEmpty(Nil()) = [9]                            
                          > [7]                            
                          = False()                        
          
          
          Following rules are (at-least) weakly oriented:
                                  f(x,Cons(x',xs)) =  [3] x + [1] x' + [1] xs + [1]                             
                                                   >= [3] x + [1] x' + [1] xs + [0]                             
                                                   =  f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
          
                                        f(x,Nil()) =  [3] x + [3]                                               
                                                   >= [10]                                                      
                                                   =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
          
          f[Ite][False][Ite](False(),Cons(x,xs),y) =  [3] x + [3] xs + [1] y + [7]                              
                                                   >= [3] xs + [1] y + [5]                                      
                                                   =  f(xs,Cons(Cons(Nil(),Nil()),y))                           
          
          f[Ite][False][Ite](True(),x',Cons(x,xs)) =  [1] x + [3] x' + [1] xs + [2]                             
                                                   >= [3] x' + [1] xs + [1]                                     
                                                   =  f(x',xs)                                                  
          
                                  g(x,Cons(x',xs)) =  [3]                                                       
                                                   >= [2]                                                       
                                                   =  g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
          
                                        g(x,Nil()) =  [3]                                                       
                                                   >= [10]                                                      
                                                   =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
          
          g[Ite][False][Ite](False(),Cons(x,xs),y) =  [9]                                                       
                                                   >= [3]                                                       
                                                   =  g(xs,Cons(Cons(Nil(),Nil()),y))                           
          
          g[Ite][False][Ite](True(),x',Cons(x,xs)) =  [4]                                                       
                                                   >= [3]                                                       
                                                   =  g(x',xs)                                                  
          
                                      lt0(x,Nil()) =  [0]                                                       
                                                   >= [7]                                                       
                                                   =  False()                                                   
          
                      lt0(Cons(x',xs'),Cons(x,xs)) =  [0]                                                       
                                                   >= [0]                                                       
                                                   =  lt0(xs',xs)                                               
          
                            lt0(Nil(),Cons(x',xs)) =  [0]                                                       
                                                   >= [2]                                                       
                                                   =  True()                                                    
          
                              notEmpty(Cons(x,xs)) =  [2] x + [2] xs + [5]                                      
                                                   >= [2]                                                       
                                                   =  True()                                                    
          
                                        number4(n) =  [2]                                                       
                                                   >= [10]                                                      
                                                   =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            lt0(x,Nil()) -> False()
            lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs)
            lt0(Nil(),Cons(x',xs)) -> True()
            number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
        - Weak TRS:
            f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y))
            f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs)
            g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y))
            g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs)
            goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil()))
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
        - Signature:
            {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0
            ,Nil/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0
            ,notEmpty,number4} and constructors {Cons,False,Nil,True}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(Cons) = {1,2},
            uargs(f[Ite][False][Ite]) = {1},
            uargs(g[Ite][False][Ite]) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                          p(Cons) = [1] x1 + [1] x2 + [0]
                         p(False) = [0]                  
                           p(Nil) = [0]                  
                          p(True) = [0]                  
                             p(f) = [1] x2 + [5]         
            p(f[Ite][False][Ite]) = [1] x1 + [1] x3 + [5]
                             p(g) = [0]                  
            p(g[Ite][False][Ite]) = [1] x1 + [0]         
                          p(goal) = [1] x2 + [5]         
                           p(lt0) = [1] x2 + [0]         
                      p(notEmpty) = [0]                  
                       p(number4) = [1] x1 + [1]         
          
          Following rules are strictly oriented:
          f(x,Nil()) = [5]                                                  
                     > [0]                                                  
                     = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
          
          number4(n) = [1] n + [1]                                          
                     > [0]                                                  
                     = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
          
          
          Following rules are (at-least) weakly oriented:
                                  f(x,Cons(x',xs)) =  [1] x' + [1] xs + [5]                                     
                                                   >= [1] x' + [1] xs + [5]                                     
                                                   =  f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
          
          f[Ite][False][Ite](False(),Cons(x,xs),y) =  [1] y + [5]                                               
                                                   >= [1] y + [5]                                               
                                                   =  f(xs,Cons(Cons(Nil(),Nil()),y))                           
          
          f[Ite][False][Ite](True(),x',Cons(x,xs)) =  [1] x + [1] xs + [5]                                      
                                                   >= [1] xs + [5]                                              
                                                   =  f(x',xs)                                                  
          
                                  g(x,Cons(x',xs)) =  [0]                                                       
                                                   >= [0]                                                       
                                                   =  g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
          
                                        g(x,Nil()) =  [0]                                                       
                                                   >= [0]                                                       
                                                   =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
          
          g[Ite][False][Ite](False(),Cons(x,xs),y) =  [0]                                                       
                                                   >= [0]                                                       
                                                   =  g(xs,Cons(Cons(Nil(),Nil()),y))                           
          
          g[Ite][False][Ite](True(),x',Cons(x,xs)) =  [0]                                                       
                                                   >= [0]                                                       
                                                   =  g(x',xs)                                                  
          
                                         goal(x,y) =  [1] y + [5]                                               
                                                   >= [1] y + [5]                                               
                                                   =  Cons(f(x,y),Cons(g(x,y),Nil()))                           
          
                                      lt0(x,Nil()) =  [0]                                                       
                                                   >= [0]                                                       
                                                   =  False()                                                   
          
                      lt0(Cons(x',xs'),Cons(x,xs)) =  [1] x + [1] xs + [0]                                      
                                                   >= [1] xs + [0]                                              
                                                   =  lt0(xs',xs)                                               
          
                            lt0(Nil(),Cons(x',xs)) =  [1] x' + [1] xs + [0]                                     
                                                   >= [0]                                                       
                                                   =  True()                                                    
          
                              notEmpty(Cons(x,xs)) =  [0]                                                       
                                                   >= [0]                                                       
                                                   =  True()                                                    
          
                                   notEmpty(Nil()) =  [0]                                                       
                                                   >= [0]                                                       
                                                   =  False()                                                   
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            lt0(x,Nil()) -> False()
            lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs)
            lt0(Nil(),Cons(x',xs)) -> True()
        - Weak TRS:
            f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y))
            f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs)
            g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y))
            g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs)
            goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil()))
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
        - Signature:
            {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0
            ,Nil/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0
            ,notEmpty,number4} and constructors {Cons,False,Nil,True}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(Cons) = {1,2},
            uargs(f[Ite][False][Ite]) = {1},
            uargs(g[Ite][False][Ite]) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                          p(Cons) = [1] x1 + [1] x2 + [0]
                         p(False) = [0]                  
                           p(Nil) = [0]                  
                          p(True) = [0]                  
                             p(f) = [1]                  
            p(f[Ite][False][Ite]) = [1] x1 + [1]         
                             p(g) = [1]                  
            p(g[Ite][False][Ite]) = [1] x1 + [1]         
                          p(goal) = [3] x1 + [4]         
                           p(lt0) = [1] x2 + [0]         
                      p(notEmpty) = [1]                  
                       p(number4) = [1] x1 + [5]         
          
          Following rules are strictly oriented:
          g(x,Nil()) = [1]                                                  
                     > [0]                                                  
                     = Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
          
          
          Following rules are (at-least) weakly oriented:
                                  f(x,Cons(x',xs)) =  [1]                                                       
                                                   >= [1]                                                       
                                                   =  f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
          
                                        f(x,Nil()) =  [1]                                                       
                                                   >= [0]                                                       
                                                   =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
          
          f[Ite][False][Ite](False(),Cons(x,xs),y) =  [1]                                                       
                                                   >= [1]                                                       
                                                   =  f(xs,Cons(Cons(Nil(),Nil()),y))                           
          
          f[Ite][False][Ite](True(),x',Cons(x,xs)) =  [1]                                                       
                                                   >= [1]                                                       
                                                   =  f(x',xs)                                                  
          
                                  g(x,Cons(x',xs)) =  [1]                                                       
                                                   >= [1]                                                       
                                                   =  g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
          
          g[Ite][False][Ite](False(),Cons(x,xs),y) =  [1]                                                       
                                                   >= [1]                                                       
                                                   =  g(xs,Cons(Cons(Nil(),Nil()),y))                           
          
          g[Ite][False][Ite](True(),x',Cons(x,xs)) =  [1]                                                       
                                                   >= [1]                                                       
                                                   =  g(x',xs)                                                  
          
                                         goal(x,y) =  [3] x + [4]                                               
                                                   >= [2]                                                       
                                                   =  Cons(f(x,y),Cons(g(x,y),Nil()))                           
          
                                      lt0(x,Nil()) =  [0]                                                       
                                                   >= [0]                                                       
                                                   =  False()                                                   
          
                      lt0(Cons(x',xs'),Cons(x,xs)) =  [1] x + [1] xs + [0]                                      
                                                   >= [1] xs + [0]                                              
                                                   =  lt0(xs',xs)                                               
          
                            lt0(Nil(),Cons(x',xs)) =  [1] x' + [1] xs + [0]                                     
                                                   >= [0]                                                       
                                                   =  True()                                                    
          
                              notEmpty(Cons(x,xs)) =  [1]                                                       
                                                   >= [0]                                                       
                                                   =  True()                                                    
          
                                   notEmpty(Nil()) =  [1]                                                       
                                                   >= [0]                                                       
                                                   =  False()                                                   
          
                                        number4(n) =  [1] n + [5]                                               
                                                   >= [0]                                                       
                                                   =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            lt0(x,Nil()) -> False()
            lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs)
            lt0(Nil(),Cons(x',xs)) -> True()
        - Weak TRS:
            f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y))
            f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs)
            g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y))
            g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs)
            goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil()))
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
        - Signature:
            {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0
            ,Nil/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0
            ,notEmpty,number4} and constructors {Cons,False,Nil,True}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(Cons) = {1,2},
          uargs(f[Ite][False][Ite]) = {1},
          uargs(g[Ite][False][Ite]) = {1}
        
        Following symbols are considered usable:
          {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4}
        TcT has computed the following interpretation:
                        p(Cons) = [1] x_1 + [1] x_2 + [1]
                       p(False) = [0]                    
                         p(Nil) = [0]                    
                        p(True) = [2]                    
                           p(f) = [2] x_1 + [4]          
          p(f[Ite][False][Ite]) = [1] x_1 + [2] x_2 + [2]
                           p(g) = [8] x_1 + [8]          
          p(g[Ite][False][Ite]) = [4] x_1 + [8] x_2 + [0]
                        p(goal) = [10] x_1 + [15]        
                         p(lt0) = [2] x_2 + [0]          
                    p(notEmpty) = [8] x_1 + [15]         
                     p(number4) = [1] x_1 + [4]          
        
        Following rules are strictly oriented:
        lt0(Cons(x',xs'),Cons(x,xs)) = [2] x + [2] xs + [2]
                                     > [2] xs + [0]        
                                     = lt0(xs',xs)         
        
        
        Following rules are (at-least) weakly oriented:
                                f(x,Cons(x',xs)) =  [2] x + [4]                                               
                                                 >= [2] x + [4]                                               
                                                 =  f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
        
                                      f(x,Nil()) =  [2] x + [4]                                               
                                                 >= [4]                                                       
                                                 =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
        
        f[Ite][False][Ite](False(),Cons(x,xs),y) =  [2] x + [2] xs + [4]                                      
                                                 >= [2] xs + [4]                                              
                                                 =  f(xs,Cons(Cons(Nil(),Nil()),y))                           
        
        f[Ite][False][Ite](True(),x',Cons(x,xs)) =  [2] x' + [4]                                              
                                                 >= [2] x' + [4]                                              
                                                 =  f(x',xs)                                                  
        
                                g(x,Cons(x',xs)) =  [8] x + [8]                                               
                                                 >= [8] x + [8]                                               
                                                 =  g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
        
                                      g(x,Nil()) =  [8] x + [8]                                               
                                                 >= [4]                                                       
                                                 =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
        
        g[Ite][False][Ite](False(),Cons(x,xs),y) =  [8] x + [8] xs + [8]                                      
                                                 >= [8] xs + [8]                                              
                                                 =  g(xs,Cons(Cons(Nil(),Nil()),y))                           
        
        g[Ite][False][Ite](True(),x',Cons(x,xs)) =  [8] x' + [8]                                              
                                                 >= [8] x' + [8]                                              
                                                 =  g(x',xs)                                                  
        
                                       goal(x,y) =  [10] x + [15]                                             
                                                 >= [10] x + [14]                                             
                                                 =  Cons(f(x,y),Cons(g(x,y),Nil()))                           
        
                                    lt0(x,Nil()) =  [0]                                                       
                                                 >= [0]                                                       
                                                 =  False()                                                   
        
                          lt0(Nil(),Cons(x',xs)) =  [2] x' + [2] xs + [2]                                     
                                                 >= [2]                                                       
                                                 =  True()                                                    
        
                            notEmpty(Cons(x,xs)) =  [8] x + [8] xs + [23]                                     
                                                 >= [2]                                                       
                                                 =  True()                                                    
        
                                 notEmpty(Nil()) =  [15]                                                      
                                                 >= [0]                                                       
                                                 =  False()                                                   
        
                                      number4(n) =  [1] n + [4]                                               
                                                 >= [4]                                                       
                                                 =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
        
** Step 1.b:6: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            lt0(x,Nil()) -> False()
            lt0(Nil(),Cons(x',xs)) -> True()
        - Weak TRS:
            f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y))
            f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs)
            g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y))
            g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs)
            goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil()))
            lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs)
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
        - Signature:
            {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0
            ,Nil/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0
            ,notEmpty,number4} and constructors {Cons,False,Nil,True}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(Cons) = {1,2},
          uargs(f[Ite][False][Ite]) = {1},
          uargs(g[Ite][False][Ite]) = {1}
        
        Following symbols are considered usable:
          {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4}
        TcT has computed the following interpretation:
                        p(Cons) = [1] x_1 + [1] x_2 + [1]
                       p(False) = [0]                    
                         p(Nil) = [0]                    
                        p(True) = [1]                    
                           p(f) = [8] x_1 + [8]          
          p(f[Ite][False][Ite]) = [8] x_1 + [8] x_2 + [0]
                           p(g) = [1] x_1 + [5]          
          p(g[Ite][False][Ite]) = [1] x_1 + [1] x_2 + [4]
                        p(goal) = [10] x_1 + [15]        
                         p(lt0) = [1]                    
                    p(notEmpty) = [4]                    
                     p(number4) = [9]                    
        
        Following rules are strictly oriented:
        lt0(x,Nil()) = [1]    
                     > [0]    
                     = False()
        
        
        Following rules are (at-least) weakly oriented:
                                f(x,Cons(x',xs)) =  [8] x + [8]                                               
                                                 >= [8] x + [8]                                               
                                                 =  f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
        
                                      f(x,Nil()) =  [8] x + [8]                                               
                                                 >= [4]                                                       
                                                 =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
        
        f[Ite][False][Ite](False(),Cons(x,xs),y) =  [8] x + [8] xs + [8]                                      
                                                 >= [8] xs + [8]                                              
                                                 =  f(xs,Cons(Cons(Nil(),Nil()),y))                           
        
        f[Ite][False][Ite](True(),x',Cons(x,xs)) =  [8] x' + [8]                                              
                                                 >= [8] x' + [8]                                              
                                                 =  f(x',xs)                                                  
        
                                g(x,Cons(x',xs)) =  [1] x + [5]                                               
                                                 >= [1] x + [5]                                               
                                                 =  g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
        
                                      g(x,Nil()) =  [1] x + [5]                                               
                                                 >= [4]                                                       
                                                 =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
        
        g[Ite][False][Ite](False(),Cons(x,xs),y) =  [1] x + [1] xs + [5]                                      
                                                 >= [1] xs + [5]                                              
                                                 =  g(xs,Cons(Cons(Nil(),Nil()),y))                           
        
        g[Ite][False][Ite](True(),x',Cons(x,xs)) =  [1] x' + [5]                                              
                                                 >= [1] x' + [5]                                              
                                                 =  g(x',xs)                                                  
        
                                       goal(x,y) =  [10] x + [15]                                             
                                                 >= [9] x + [15]                                              
                                                 =  Cons(f(x,y),Cons(g(x,y),Nil()))                           
        
                    lt0(Cons(x',xs'),Cons(x,xs)) =  [1]                                                       
                                                 >= [1]                                                       
                                                 =  lt0(xs',xs)                                               
        
                          lt0(Nil(),Cons(x',xs)) =  [1]                                                       
                                                 >= [1]                                                       
                                                 =  True()                                                    
        
                            notEmpty(Cons(x,xs)) =  [4]                                                       
                                                 >= [1]                                                       
                                                 =  True()                                                    
        
                                 notEmpty(Nil()) =  [4]                                                       
                                                 >= [0]                                                       
                                                 =  False()                                                   
        
                                      number4(n) =  [9]                                                       
                                                 >= [4]                                                       
                                                 =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
        
** Step 1.b:7: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            lt0(Nil(),Cons(x',xs)) -> True()
        - Weak TRS:
            f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y))
            f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs)
            g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y))
            g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs)
            goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil()))
            lt0(x,Nil()) -> False()
            lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs)
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
        - Signature:
            {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0
            ,Nil/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0
            ,notEmpty,number4} and constructors {Cons,False,Nil,True}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(Cons) = {1,2},
          uargs(f[Ite][False][Ite]) = {1},
          uargs(g[Ite][False][Ite]) = {1}
        
        Following symbols are considered usable:
          {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0,notEmpty,number4}
        TcT has computed the following interpretation:
                        p(Cons) = [1] x_1 + [1] x_2 + [1]          
                       p(False) = [0]                              
                         p(Nil) = [0]                              
                        p(True) = [1]                              
                           p(f) = [7] x_1 + [2] x_2 + [9]          
          p(f[Ite][False][Ite]) = [1] x_1 + [7] x_2 + [2] x_3 + [6]
                           p(g) = [8] x_1 + [2] x_2 + [4]          
          p(g[Ite][False][Ite]) = [2] x_1 + [8] x_2 + [2] x_3 + [0]
                        p(goal) = [15] x_1 + [4] x_2 + [15]        
                         p(lt0) = [2] x_2 + [0]                    
                    p(notEmpty) = [3] x_1 + [0]                    
                     p(number4) = [9]                              
        
        Following rules are strictly oriented:
        lt0(Nil(),Cons(x',xs)) = [2] x' + [2] xs + [2]
                               > [1]                  
                               = True()               
        
        
        Following rules are (at-least) weakly oriented:
                                f(x,Cons(x',xs)) =  [7] x + [2] x' + [2] xs + [11]                            
                                                 >= [7] x + [2] x' + [2] xs + [10]                            
                                                 =  f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
        
                                      f(x,Nil()) =  [7] x + [9]                                               
                                                 >= [4]                                                       
                                                 =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
        
        f[Ite][False][Ite](False(),Cons(x,xs),y) =  [7] x + [7] xs + [2] y + [13]                             
                                                 >= [7] xs + [2] y + [13]                                     
                                                 =  f(xs,Cons(Cons(Nil(),Nil()),y))                           
        
        f[Ite][False][Ite](True(),x',Cons(x,xs)) =  [2] x + [7] x' + [2] xs + [9]                             
                                                 >= [7] x' + [2] xs + [9]                                     
                                                 =  f(x',xs)                                                  
        
                                g(x,Cons(x',xs)) =  [8] x + [2] x' + [2] xs + [6]                             
                                                 >= [8] x + [2] x' + [2] xs + [6]                             
                                                 =  g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
        
                                      g(x,Nil()) =  [8] x + [4]                                               
                                                 >= [4]                                                       
                                                 =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
        
        g[Ite][False][Ite](False(),Cons(x,xs),y) =  [8] x + [8] xs + [2] y + [8]                              
                                                 >= [8] xs + [2] y + [8]                                      
                                                 =  g(xs,Cons(Cons(Nil(),Nil()),y))                           
        
        g[Ite][False][Ite](True(),x',Cons(x,xs)) =  [2] x + [8] x' + [2] xs + [4]                             
                                                 >= [8] x' + [2] xs + [4]                                     
                                                 =  g(x',xs)                                                  
        
                                       goal(x,y) =  [15] x + [4] y + [15]                                     
                                                 >= [15] x + [4] y + [15]                                     
                                                 =  Cons(f(x,y),Cons(g(x,y),Nil()))                           
        
                                    lt0(x,Nil()) =  [0]                                                       
                                                 >= [0]                                                       
                                                 =  False()                                                   
        
                    lt0(Cons(x',xs'),Cons(x,xs)) =  [2] x + [2] xs + [2]                                      
                                                 >= [2] xs + [0]                                              
                                                 =  lt0(xs',xs)                                               
        
                            notEmpty(Cons(x,xs)) =  [3] x + [3] xs + [3]                                      
                                                 >= [1]                                                       
                                                 =  True()                                                    
        
                                 notEmpty(Nil()) =  [0]                                                       
                                                 >= [0]                                                       
                                                 =  False()                                                   
        
                                      number4(n) =  [9]                                                       
                                                 >= [4]                                                       
                                                 =  Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))     
        
** Step 1.b:8: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            f(x,Cons(x',xs)) -> f[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            f(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            f[Ite][False][Ite](False(),Cons(x,xs),y) -> f(xs,Cons(Cons(Nil(),Nil()),y))
            f[Ite][False][Ite](True(),x',Cons(x,xs)) -> f(x',xs)
            g(x,Cons(x',xs)) -> g[Ite][False][Ite](lt0(x,Cons(Nil(),Nil())),x,Cons(x',xs))
            g(x,Nil()) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
            g[Ite][False][Ite](False(),Cons(x,xs),y) -> g(xs,Cons(Cons(Nil(),Nil()),y))
            g[Ite][False][Ite](True(),x',Cons(x,xs)) -> g(x',xs)
            goal(x,y) -> Cons(f(x,y),Cons(g(x,y),Nil()))
            lt0(x,Nil()) -> False()
            lt0(Cons(x',xs'),Cons(x,xs)) -> lt0(xs',xs)
            lt0(Nil(),Cons(x',xs)) -> True()
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
            number4(n) -> Cons(Nil(),Cons(Nil(),Cons(Nil(),Cons(Nil(),Nil()))))
        - Signature:
            {f/2,f[Ite][False][Ite]/3,g/2,g[Ite][False][Ite]/3,goal/2,lt0/2,notEmpty/1,number4/1} / {Cons/2,False/0
            ,Nil/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,f[Ite][False][Ite],g,g[Ite][False][Ite],goal,lt0
            ,notEmpty,number4} and constructors {Cons,False,Nil,True}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))