* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
+ Considered Problem:
- Strict TRS:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1} / {0/0,Cons/2,False/0
,Nil/0,S/1,True/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {<,>,app,notEmpty,part,part[False][Ite],part[Ite],qs
,quicksort} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1} / {0/0,Cons/2,False/0
,Nil/0,S/1,True/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {<,>,app,notEmpty,part,part[False][Ite],part[Ite],qs
,quicksort} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
app(y,z){y -> Cons(x,y)} =
app(Cons(x,y),z) ->^+ Cons(x,app(y,z))
= C[app(y,z) = app(y,z){}]
** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict TRS:
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1} / {0/0,Cons/2,False/0
,Nil/0,S/1,True/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {<,>,app,notEmpty,part,part[False][Ite],part[Ite],qs
,quicksort} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
DependencyPairs {dpKind_ = DT}
+ Details:
We add the following dependency tuples:
Strict DPs
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
app#(Nil(),ys) -> c_2()
notEmpty#(Cons(x,xs)) -> c_3()
notEmpty#(Nil()) -> c_4()
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x))
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
quicksort#(Cons(x,Nil())) -> c_9()
quicksort#(Nil()) -> c_10()
Weak DPs
<#(x,0()) -> c_11()
<#(0(),S(y)) -> c_12()
<#(S(x),S(y)) -> c_13(<#(x,y))
>#(0(),y) -> c_14()
>#(S(x),0()) -> c_15()
>#(S(x),S(y)) -> c_16(>#(x,y))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2),<#(x',x))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict DPs:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
app#(Nil(),ys) -> c_2()
notEmpty#(Cons(x,xs)) -> c_3()
notEmpty#(Nil()) -> c_4()
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x))
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
quicksort#(Cons(x,Nil())) -> c_9()
quicksort#(Nil()) -> c_10()
- Weak DPs:
<#(x,0()) -> c_11()
<#(0(),S(y)) -> c_12()
<#(S(x),S(y)) -> c_13(<#(x,y))
>#(0(),y) -> c_14()
>#(S(x),0()) -> c_15()
>#(S(x),S(y)) -> c_16(>#(x,y))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2),<#(x',x))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/2,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/2,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
UsableRules
+ Details:
We replace rewrite rules by usable rules:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
<#(x,0()) -> c_11()
<#(0(),S(y)) -> c_12()
<#(S(x),S(y)) -> c_13(<#(x,y))
>#(0(),y) -> c_14()
>#(S(x),0()) -> c_15()
>#(S(x),S(y)) -> c_16(>#(x,y))
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
app#(Nil(),ys) -> c_2()
notEmpty#(Cons(x,xs)) -> c_3()
notEmpty#(Nil()) -> c_4()
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2),<#(x',x))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
quicksort#(Cons(x,Nil())) -> c_9()
quicksort#(Nil()) -> c_10()
** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict DPs:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
app#(Nil(),ys) -> c_2()
notEmpty#(Cons(x,xs)) -> c_3()
notEmpty#(Nil()) -> c_4()
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x))
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
quicksort#(Cons(x,Nil())) -> c_9()
quicksort#(Nil()) -> c_10()
- Weak DPs:
<#(x,0()) -> c_11()
<#(0(),S(y)) -> c_12()
<#(S(x),S(y)) -> c_13(<#(x,y))
>#(0(),y) -> c_14()
>#(S(x),0()) -> c_15()
>#(S(x),S(y)) -> c_16(>#(x,y))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2),<#(x',x))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/2,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/2,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
+ Details:
We estimate the number of application of
{2,3,4,9,10}
by application of
Pre({2,3,4,9,10}) = {1,5,7}.
Here rules are labelled as follows:
1: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
2: app#(Nil(),ys) -> c_2()
3: notEmpty#(Cons(x,xs)) -> c_3()
4: notEmpty#(Nil()) -> c_4()
5: part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
6: part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x))
7: qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
8: quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
9: quicksort#(Cons(x,Nil())) -> c_9()
10: quicksort#(Nil()) -> c_10()
11: <#(x,0()) -> c_11()
12: <#(0(),S(y)) -> c_12()
13: <#(S(x),S(y)) -> c_13(<#(x,y))
14: >#(0(),y) -> c_14()
15: >#(S(x),0()) -> c_15()
16: >#(S(x),S(y)) -> c_16(>#(x,y))
17: part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
18: part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
19: part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2)
,<#(x',x))
20: part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict DPs:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x))
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
<#(x,0()) -> c_11()
<#(0(),S(y)) -> c_12()
<#(S(x),S(y)) -> c_13(<#(x,y))
>#(0(),y) -> c_14()
>#(S(x),0()) -> c_15()
>#(S(x),S(y)) -> c_16(>#(x,y))
app#(Nil(),ys) -> c_2()
notEmpty#(Cons(x,xs)) -> c_3()
notEmpty#(Nil()) -> c_4()
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2),<#(x',x))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
quicksort#(Cons(x,Nil())) -> c_9()
quicksort#(Nil()) -> c_10()
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/2,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/2,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:S:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
-->_1 app#(Nil(),ys) -> c_2():12
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
2:S:part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
-->_1 app#(Nil(),ys) -> c_2():12
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
3:S:part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x))
-->_1 part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2)):18
-->_1 part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2)
,<#(x',x)):17
-->_2 >#(S(x),S(y)) -> c_16(>#(x,y)):11
-->_2 >#(S(x),0()) -> c_15():10
-->_2 >#(0(),y) -> c_14():9
4:S:qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
-->_2 quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil())):5
-->_2 quicksort#(Nil()) -> c_10():20
-->_2 quicksort#(Cons(x,Nil())) -> c_9():19
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
5:S:quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
-->_1 qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs)):4
-->_2 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x)):3
6:W:<#(x,0()) -> c_11()
7:W:<#(0(),S(y)) -> c_12()
8:W:<#(S(x),S(y)) -> c_13(<#(x,y))
-->_1 <#(S(x),S(y)) -> c_13(<#(x,y)):8
-->_1 <#(0(),S(y)) -> c_12():7
-->_1 <#(x,0()) -> c_11():6
9:W:>#(0(),y) -> c_14()
10:W:>#(S(x),0()) -> c_15()
11:W:>#(S(x),S(y)) -> c_16(>#(x,y))
-->_1 >#(S(x),S(y)) -> c_16(>#(x,y)):11
-->_1 >#(S(x),0()) -> c_15():10
-->_1 >#(0(),y) -> c_14():9
12:W:app#(Nil(),ys) -> c_2()
13:W:notEmpty#(Cons(x,xs)) -> c_3()
14:W:notEmpty#(Nil()) -> c_4()
15:W:part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x)):3
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):2
16:W:part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x)):3
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):2
17:W:part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2)
,<#(x',x))
-->_1 part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2))):16
-->_1 part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2)):15
-->_2 <#(S(x),S(y)) -> c_13(<#(x,y)):8
-->_2 <#(0(),S(y)) -> c_12():7
-->_2 <#(x,0()) -> c_11():6
18:W:part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x)):3
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):2
19:W:quicksort#(Cons(x,Nil())) -> c_9()
20:W:quicksort#(Nil()) -> c_10()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
14: notEmpty#(Nil()) -> c_4()
13: notEmpty#(Cons(x,xs)) -> c_3()
19: quicksort#(Cons(x,Nil())) -> c_9()
20: quicksort#(Nil()) -> c_10()
11: >#(S(x),S(y)) -> c_16(>#(x,y))
9: >#(0(),y) -> c_14()
10: >#(S(x),0()) -> c_15()
8: <#(S(x),S(y)) -> c_13(<#(x,y))
6: <#(x,0()) -> c_11()
7: <#(0(),S(y)) -> c_12()
12: app#(Nil(),ys) -> c_2()
** Step 1.b:5: SimplifyRHS WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict DPs:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x))
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2),<#(x',x))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/2,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/2,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
SimplifyRHS
+ Details:
Consider the dependency graph
1:S:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
2:S:part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
3:S:part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x))
-->_1 part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2)):18
-->_1 part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2)
,<#(x',x)):17
4:S:qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
-->_2 quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil())):5
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
5:S:quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
-->_1 qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs)):4
-->_2 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x)):3
15:W:part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x)):3
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):2
16:W:part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x)):3
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):2
17:W:part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2)
,<#(x',x))
-->_1 part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2))):16
-->_1 part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2)):15
18:W:part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2),>#(x',x)):3
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):2
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
** Step 1.b:6: Decompose WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict DPs:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
+ Details:
We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
Problem (R)
- Strict DPs:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
- Weak DPs:
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
Problem (S)
- Strict DPs:
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
*** Step 1.b:6.a:1: DecomposeDG WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict DPs:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
- Weak DPs:
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
+ Details:
We decompose the input problem according to the dependency graph into the upper component
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
and a lower component
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
Further, following extension rules are added to the lower component.
qs#(x',Cons(x,xs)) -> app#(Cons(x,Nil()),Cons(x',quicksort(xs)))
qs#(x',Cons(x,xs)) -> quicksort#(xs)
quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
**** Step 1.b:6.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
+ Details:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
2: quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
Consider the set of all dependency pairs
1: qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
2: quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
SPACE(?,?)on application of the dependency pairs
{2}
These cover all (indirect) predecessors of dependency pairs
{1,2}
their number of applications is equally bounded.
The dependency pairs are shifted into the weak component.
***** Step 1.b:6.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
+ Details:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_7) = {1,2},
uargs(c_8) = {1}
Following symbols are considered usable:
{app,part,part[False][Ite],part[Ite],<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#,qs#
,quicksort#}
TcT has computed the following interpretation:
p(0) = [0]
p(<) = [0]
p(>) = [0]
p(Cons) = [1] x1 + [1] x2 + [2]
p(False) = [0]
p(Nil) = [0]
p(S) = [4]
p(True) = [0]
p(app) = [1] x1 + [1] x2 + [0]
p(notEmpty) = [1]
p(part) = [1] x2 + [1] x3 + [1] x4 + [0]
p(part[False][Ite]) = [1] x3 + [1] x4 + [1] x5 + [0]
p(part[Ite]) = [1] x3 + [1] x4 + [1] x5 + [0]
p(qs) = [5]
p(quicksort) = [0]
p(<#) = [2] x2 + [1]
p(>#) = [0]
p(app#) = [1]
p(notEmpty#) = [4]
p(part#) = [4] x3 + [0]
p(part[False][Ite]#) = [1] x2 + [1] x4 + [1] x5 + [1]
p(part[Ite]#) = [4] x2 + [2] x3 + [0]
p(qs#) = [1] x2 + [0]
p(quicksort#) = [1] x1 + [1]
p(c_1) = [4]
p(c_2) = [1]
p(c_3) = [0]
p(c_4) = [0]
p(c_5) = [4]
p(c_6) = [0]
p(c_7) = [1] x1 + [1] x2 + [0]
p(c_8) = [1] x1 + [2]
p(c_9) = [0]
p(c_10) = [1]
p(c_11) = [4]
p(c_12) = [1]
p(c_13) = [0]
p(c_14) = [1]
p(c_15) = [0]
p(c_16) = [1] x1 + [0]
p(c_17) = [1] x1 + [0]
p(c_18) = [4] x1 + [0]
p(c_19) = [4] x1 + [1]
p(c_20) = [4] x1 + [1]
Following rules are strictly oriented:
quicksort#(Cons(x,Cons(x',xs))) = [1] x + [1] x' + [1] xs + [5]
> [1] x' + [1] xs + [4]
= c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil())),part#(x,Cons(x',xs),Nil(),Nil()))
Following rules are (at-least) weakly oriented:
qs#(x',Cons(x,xs)) = [1] x + [1] xs + [2]
>= [1] xs + [2]
= c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
app(Cons(x,xs),ys) = [1] x + [1] xs + [1] ys + [2]
>= [1] x + [1] xs + [1] ys + [2]
= Cons(x,app(xs,ys))
app(Nil(),ys) = [1] ys + [0]
>= [1] ys + [0]
= ys
part(x,Nil(),xs1,xs2) = [1] xs1 + [1] xs2 + [0]
>= [1] xs1 + [1] xs2 + [0]
= app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) = [1] x + [1] xs + [1] xs1 + [1] xs2 + [2]
>= [1] x + [1] xs + [1] xs1 + [1] xs2 + [2]
= part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) = [1] x + [1] xs + [1] xs1 + [1] xs2 + [2]
>= [1] xs + [1] xs1 + [1] xs2 + [0]
= part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) = [1] x + [1] xs + [1] xs1 + [1] xs2 + [2]
>= [1] x + [1] xs + [1] xs1 + [1] xs2 + [2]
= part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) = [1] x + [1] xs + [1] xs1 + [1] xs2 + [2]
>= [1] x + [1] xs + [1] xs1 + [1] xs2 + [2]
= part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) = [1] x + [1] xs + [1] xs1 + [1] xs2 + [2]
>= [1] x + [1] xs + [1] xs1 + [1] xs2 + [2]
= part(x',xs,Cons(x,xs1),xs2)
***** Step 1.b:6.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1))
+ Considered Problem:
- Strict DPs:
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
- Weak DPs:
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
+ Details:
()
***** Step 1.b:6.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:W:qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
-->_2 quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil())):2
2:W:quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
-->_1 qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
2: quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
***** Step 1.b:6.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
**** Step 1.b:6.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
- Weak DPs:
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> app#(Cons(x,Nil()),Cons(x',quicksort(xs)))
qs#(x',Cons(x,xs)) -> quicksort#(xs)
quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
+ Details:
We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
1: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
The strictly oriented rules are moved into the weak component.
***** Step 1.b:6.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
- Weak DPs:
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> app#(Cons(x,Nil()),Cons(x',quicksort(xs)))
qs#(x',Cons(x,xs)) -> quicksort#(xs)
quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
+ Details:
We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
The following argument positions are considered usable:
uargs(c_1) = {1},
uargs(c_5) = {1},
uargs(c_6) = {1},
uargs(c_17) = {1},
uargs(c_18) = {1},
uargs(c_19) = {1},
uargs(c_20) = {1}
Following symbols are considered usable:
{app,part,part[False][Ite],part[Ite],<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#,qs#
,quicksort#}
TcT has computed the following interpretation:
p(0) = [0]
[1]
p(<) = [0 1] x1 + [1 0] x2 + [1]
[0 0] [0 0] [0]
p(>) = [0 1] x2 + [0]
[0 0] [0]
p(Cons) = [0 0] x2 + [0]
[0 1] [1]
p(False) = [0]
[0]
p(Nil) = [0]
[0]
p(S) = [0 1] x1 + [0]
[0 0] [1]
p(True) = [0]
[0]
p(app) = [0 0] x1 + [1 0] x2 + [0]
[0 1] [0 1] [0]
p(notEmpty) = [0]
[0]
p(part) = [0 0] x2 + [0 0] x3 + [1 0] x4 + [0]
[0 1] [0 1] [0 1] [0]
p(part[False][Ite]) = [0 0] x3 + [0 0] x4 + [1 0] x5 + [0]
[0 1] [0 1] [0 1] [0]
p(part[Ite]) = [0 0] x3 + [0 0] x4 + [1 0] x5 + [0]
[0 1] [0 1] [0 1] [0]
p(qs) = [0]
[0]
p(quicksort) = [1]
[0]
p(<#) = [0]
[0]
p(>#) = [0]
[0]
p(app#) = [0 1] x1 + [0]
[0 1] [1]
p(notEmpty#) = [0]
[0]
p(part#) = [0 1] x2 + [0 1] x3 + [0 0] x4 + [0]
[0 0] [1 0] [1 0] [0]
p(part[False][Ite]#) = [0 1] x3 + [0 1] x4 + [0]
[0 1] [0 1] [0]
p(part[Ite]#) = [0 1] x3 + [0 1] x4 + [0]
[0 1] [0 1] [1]
p(qs#) = [0 1] x2 + [0]
[0 1] [1]
p(quicksort#) = [0 1] x1 + [0]
[0 1] [1]
p(c_1) = [1 0] x1 + [0]
[0 0] [0]
p(c_2) = [0]
[0]
p(c_3) = [0]
[0]
p(c_4) = [0]
[0]
p(c_5) = [1 0] x1 + [0]
[0 0] [0]
p(c_6) = [1 0] x1 + [0]
[0 0] [0]
p(c_7) = [0]
[0]
p(c_8) = [0]
[0]
p(c_9) = [0]
[0]
p(c_10) = [0]
[0]
p(c_11) = [0]
[0]
p(c_12) = [0]
[0]
p(c_13) = [0]
[0]
p(c_14) = [0]
[0]
p(c_15) = [0]
[0]
p(c_16) = [0]
[0]
p(c_17) = [1 0] x1 + [1]
[1 0] [1]
p(c_18) = [1 0] x1 + [0]
[1 0] [0]
p(c_19) = [1 0] x1 + [0]
[0 1] [0]
p(c_20) = [1 0] x1 + [0]
[1 0] [1]
Following rules are strictly oriented:
app#(Cons(x,xs),ys) = [0 1] xs + [1]
[0 1] [2]
> [0 1] xs + [0]
[0 0] [0]
= c_1(app#(xs,ys))
Following rules are (at-least) weakly oriented:
part#(x,Nil(),xs1,xs2) = [0 1] xs1 + [0 0] xs2 + [0]
[1 0] [1 0] [0]
>= [0 1] xs1 + [0]
[0 0] [0]
= c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) = [0 1] xs + [0 1] xs1 + [0 0] xs2 + [1]
[0 0] [1 0] [1 0] [0]
>= [0 1] xs + [0 1] xs1 + [1]
[0 0] [0 0] [0]
= c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) = [0 1] xs + [0 1] xs1 + [1]
[0 1] [0 1] [1]
>= [0 1] xs + [0 1] xs1 + [1]
[0 1] [0 1] [1]
= c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) = [0 1] xs + [0 1] xs1 + [1]
[0 1] [0 1] [1]
>= [0 1] xs + [0 1] xs1 + [0]
[0 1] [0 1] [0]
= c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) = [0 1] xs + [0 1] xs1 + [1]
[0 1] [0 1] [2]
>= [0 1] xs + [0 1] xs1 + [1]
[0 1] [0 1] [1]
= c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) = [0 1] xs + [0 1] xs1 + [1]
[0 1] [0 1] [2]
>= [0 1] xs + [0 1] xs1 + [1]
[0 1] [0 1] [2]
= c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) = [0 1] xs + [1]
[0 1] [2]
>= [1]
[2]
= app#(Cons(x,Nil()),Cons(x',quicksort(xs)))
qs#(x',Cons(x,xs)) = [0 1] xs + [1]
[0 1] [2]
>= [0 1] xs + [0]
[0 1] [1]
= quicksort#(xs)
quicksort#(Cons(x,Cons(x',xs))) = [0 1] xs + [2]
[0 1] [3]
>= [0 1] xs + [1]
[0 0] [0]
= part#(x,Cons(x',xs),Nil(),Nil())
quicksort#(Cons(x,Cons(x',xs))) = [0 1] xs + [2]
[0 1] [3]
>= [0 1] xs + [1]
[0 1] [2]
= qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
app(Cons(x,xs),ys) = [0 0] xs + [1 0] ys + [0]
[0 1] [0 1] [1]
>= [0 0] xs + [0 0] ys + [0]
[0 1] [0 1] [1]
= Cons(x,app(xs,ys))
app(Nil(),ys) = [1 0] ys + [0]
[0 1] [0]
>= [1 0] ys + [0]
[0 1] [0]
= ys
part(x,Nil(),xs1,xs2) = [0 0] xs1 + [1 0] xs2 + [0]
[0 1] [0 1] [0]
>= [0 0] xs1 + [1 0] xs2 + [0]
[0 1] [0 1] [0]
= app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) = [0 0] xs + [0 0] xs1 + [1 0] xs2 + [0]
[0 1] [0 1] [0 1] [1]
>= [0 0] xs + [0 0] xs1 + [1 0] xs2 + [0]
[0 1] [0 1] [0 1] [1]
= part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) = [0 0] xs + [0 0] xs1 + [1 0] xs2 + [0]
[0 1] [0 1] [0 1] [1]
>= [0 0] xs + [0 0] xs1 + [1 0] xs2 + [0]
[0 1] [0 1] [0 1] [0]
= part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) = [0 0] xs + [0 0] xs1 + [1 0] xs2 + [0]
[0 1] [0 1] [0 1] [1]
>= [0 0] xs + [0 0] xs1 + [0 0] xs2 + [0]
[0 1] [0 1] [0 1] [1]
= part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) = [0 0] xs + [0 0] xs1 + [1 0] xs2 + [0]
[0 1] [0 1] [0 1] [1]
>= [0 0] xs + [0 0] xs1 + [1 0] xs2 + [0]
[0 1] [0 1] [0 1] [1]
= part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) = [0 0] xs + [0 0] xs1 + [1 0] xs2 + [0]
[0 1] [0 1] [0 1] [1]
>= [0 0] xs + [0 0] xs1 + [1 0] xs2 + [0]
[0 1] [0 1] [0 1] [1]
= part(x',xs,Cons(x,xs1),xs2)
***** Step 1.b:6.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> app#(Cons(x,Nil()),Cons(x',quicksort(xs)))
qs#(x',Cons(x,xs)) -> quicksort#(xs)
quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
+ Details:
()
***** Step 1.b:6.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> app#(Cons(x,Nil()),Cons(x',quicksort(xs)))
qs#(x',Cons(x,xs)) -> quicksort#(xs)
quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:W:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
2:W:part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
3:W:part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
-->_1 part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2)):7
-->_1 part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2)):6
4:W:part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):3
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):2
5:W:part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):3
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):2
6:W:part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
-->_1 part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2))):5
-->_1 part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2)):4
7:W:part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):3
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):2
8:W:qs#(x',Cons(x,xs)) -> app#(Cons(x,Nil()),Cons(x',quicksort(xs)))
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1
9:W:qs#(x',Cons(x,xs)) -> quicksort#(xs)
-->_1 quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil())):11
-->_1 quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil()):10
10:W:quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):3
11:W:quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
-->_1 qs#(x',Cons(x,xs)) -> quicksort#(xs):9
-->_1 qs#(x',Cons(x,xs)) -> app#(Cons(x,Nil()),Cons(x',quicksort(xs))):8
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
9: qs#(x',Cons(x,xs)) -> quicksort#(xs)
11: quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
10: quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
8: qs#(x',Cons(x,xs)) -> app#(Cons(x,Nil()),Cons(x',quicksort(xs)))
3: part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
7: part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
5: part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
6: part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
4: part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
2: part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
1: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
***** Step 1.b:6.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
*** Step 1.b:6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict DPs:
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:S:part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):5
2:S:part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
-->_1 part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2)):9
-->_1 part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2)):8
3:S:qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):5
-->_2 quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil())):4
4:S:quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
-->_1 qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs)):3
-->_2 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):2
5:W:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
-->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):5
6:W:part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):2
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):1
7:W:part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):2
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):1
8:W:part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
-->_1 part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2))):7
-->_1 part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2)):6
9:W:part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):2
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
5: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys))
*** Step 1.b:6.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict DPs:
part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1,c_7/2,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
SimplifyRHS
+ Details:
Consider the dependency graph
1:S:part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2))
2:S:part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
-->_1 part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2)):9
-->_1 part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2)):8
3:S:qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs))
-->_2 quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil())):4
4:S:quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
-->_1 qs#(x',Cons(x,xs)) -> c_7(app#(Cons(x,Nil()),Cons(x',quicksort(xs))),quicksort#(xs)):3
-->_2 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):2
6:W:part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):2
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):1
7:W:part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):2
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):1
8:W:part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
-->_1 part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2))):7
-->_1 part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2)):6
9:W:part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):2
-->_1 part#(x,Nil(),xs1,xs2) -> c_5(app#(xs1,xs2)):1
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
part#(x,Nil(),xs1,xs2) -> c_5()
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
*** Step 1.b:6.b:3: UsableRules WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict DPs:
part#(x,Nil(),xs1,xs2) -> c_5()
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
qs(x',Cons(x,xs)) -> app(Cons(x,Nil()),Cons(x',quicksort(xs)))
quicksort(Cons(x,Cons(x',xs))) -> qs(x,part(x,Cons(x',xs),Nil(),Nil()))
quicksort(Cons(x,Nil())) -> Cons(x,Nil())
quicksort(Nil()) -> Nil()
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
UsableRules
+ Details:
We replace rewrite rules by usable rules:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
part#(x,Nil(),xs1,xs2) -> c_5()
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
*** Step 1.b:6.b:4: Decompose WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict DPs:
part#(x,Nil(),xs1,xs2) -> c_5()
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
+ Details:
We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
Problem (R)
- Strict DPs:
part#(x,Nil(),xs1,xs2) -> c_5()
- Weak DPs:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
Problem (S)
- Strict DPs:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
part#(x,Nil(),xs1,xs2) -> c_5()
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
**** Step 1.b:6.b:4.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
part#(x,Nil(),xs1,xs2) -> c_5()
- Weak DPs:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
+ Details:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
1: part#(x,Nil(),xs1,xs2) -> c_5()
The strictly oriented rules are moved into the weak component.
***** Step 1.b:6.b:4.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
part#(x,Nil(),xs1,xs2) -> c_5()
- Weak DPs:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
+ Details:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_6) = {1},
uargs(c_7) = {1},
uargs(c_8) = {1,2},
uargs(c_17) = {1},
uargs(c_18) = {1},
uargs(c_19) = {1},
uargs(c_20) = {1}
Following symbols are considered usable:
{app,part,part[False][Ite],part[Ite],<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#,qs#
,quicksort#}
TcT has computed the following interpretation:
p(0) = [0]
p(<) = [4] x1 + [0]
p(>) = [0]
p(Cons) = [1] x2 + [4]
p(False) = [0]
p(Nil) = [3]
p(S) = [1]
p(True) = [0]
p(app) = [1] x1 + [1] x2 + [0]
p(notEmpty) = [1]
p(part) = [1] x2 + [1] x3 + [1] x4 + [1]
p(part[False][Ite]) = [1] x3 + [1] x4 + [1] x5 + [1]
p(part[Ite]) = [1] x3 + [1] x4 + [1] x5 + [1]
p(qs) = [4] x2 + [0]
p(quicksort) = [0]
p(<#) = [2] x1 + [1]
p(>#) = [1] x1 + [2] x2 + [0]
p(app#) = [4] x1 + [1] x2 + [1]
p(notEmpty#) = [2] x1 + [2]
p(part#) = [1]
p(part[False][Ite]#) = [1]
p(part[Ite]#) = [1]
p(qs#) = [1] x2 + [0]
p(quicksort#) = [1] x1 + [4]
p(c_1) = [2] x1 + [4]
p(c_2) = [1]
p(c_3) = [2]
p(c_4) = [4]
p(c_5) = [0]
p(c_6) = [1] x1 + [0]
p(c_7) = [1] x1 + [0]
p(c_8) = [1] x1 + [1] x2 + [0]
p(c_9) = [1]
p(c_10) = [0]
p(c_11) = [1]
p(c_12) = [1]
p(c_13) = [0]
p(c_14) = [0]
p(c_15) = [1]
p(c_16) = [1]
p(c_17) = [1] x1 + [0]
p(c_18) = [1] x1 + [0]
p(c_19) = [1] x1 + [0]
p(c_20) = [1] x1 + [0]
Following rules are strictly oriented:
part#(x,Nil(),xs1,xs2) = [1]
> [0]
= c_5()
Following rules are (at-least) weakly oriented:
part#(x',Cons(x,xs),xs1,xs2) = [1]
>= [1]
= c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) = [1]
>= [1]
= c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) = [1]
>= [1]
= c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) = [1]
>= [1]
= c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) = [1]
>= [1]
= c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) = [1] xs + [4]
>= [1] xs + [4]
= c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) = [1] xs + [12]
>= [1] xs + [12]
= c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil())),part#(x,Cons(x',xs),Nil(),Nil()))
app(Cons(x,xs),ys) = [1] xs + [1] ys + [4]
>= [1] xs + [1] ys + [4]
= Cons(x,app(xs,ys))
app(Nil(),ys) = [1] ys + [3]
>= [1] ys + [0]
= ys
part(x,Nil(),xs1,xs2) = [1] xs1 + [1] xs2 + [4]
>= [1] xs1 + [1] xs2 + [0]
= app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [5]
>= [1] xs + [1] xs1 + [1] xs2 + [5]
= part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [5]
>= [1] xs + [1] xs1 + [1] xs2 + [1]
= part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [5]
>= [1] xs + [1] xs1 + [1] xs2 + [5]
= part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [5]
>= [1] xs + [1] xs1 + [1] xs2 + [5]
= part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [5]
>= [1] xs + [1] xs1 + [1] xs2 + [5]
= part(x',xs,Cons(x,xs1),xs2)
***** Step 1.b:6.b:4.a:1.a:2: Assumption WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
part#(x,Nil(),xs1,xs2) -> c_5()
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
+ Details:
()
***** Step 1.b:6.b:4.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
part#(x,Nil(),xs1,xs2) -> c_5()
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:W:part#(x,Nil(),xs1,xs2) -> c_5()
2:W:part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
-->_1 part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2)):6
-->_1 part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2)):5
3:W:part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):2
-->_1 part#(x,Nil(),xs1,xs2) -> c_5():1
4:W:part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):2
-->_1 part#(x,Nil(),xs1,xs2) -> c_5():1
5:W:part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
-->_1 part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2))):4
-->_1 part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2)):3
6:W:part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):2
-->_1 part#(x,Nil(),xs1,xs2) -> c_5():1
7:W:qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
-->_1 quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil())):8
8:W:quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
-->_1 qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs)):7
-->_2 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):2
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
7: qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
8: quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
2: part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
6: part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
4: part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
5: part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
3: part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
1: part#(x,Nil(),xs1,xs2) -> c_5()
***** Step 1.b:6.b:4.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
**** Step 1.b:6.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict DPs:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
part#(x,Nil(),xs1,xs2) -> c_5()
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:S:part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
-->_1 part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2)):8
-->_1 part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2)):7
2:S:qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
-->_1 quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil())):3
3:S:quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
-->_1 qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs)):2
-->_2 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):1
4:W:part#(x,Nil(),xs1,xs2) -> c_5()
5:W:part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
-->_1 part#(x,Nil(),xs1,xs2) -> c_5():4
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):1
6:W:part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
-->_1 part#(x,Nil(),xs1,xs2) -> c_5():4
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):1
7:W:part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
-->_1 part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2))):6
-->_1 part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2)):5
8:W:part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
-->_1 part#(x,Nil(),xs1,xs2) -> c_5():4
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
4: part#(x,Nil(),xs1,xs2) -> c_5()
**** Step 1.b:6.b:4.b:2: Decompose WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict DPs:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
+ Details:
We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
Problem (R)
- Strict DPs:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
- Weak DPs:
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
Problem (S)
- Strict DPs:
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
***** Step 1.b:6.b:4.b:2.a:1: DecomposeDG WORST_CASE(?,O(n^2))
+ Considered Problem:
- Strict DPs:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
- Weak DPs:
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
+ Details:
We decompose the input problem according to the dependency graph into the upper component
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
and a lower component
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
Further, following extension rules are added to the lower component.
qs#(x',Cons(x,xs)) -> quicksort#(xs)
quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
****** Step 1.b:6.b:4.b:2.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
+ Details:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
1: quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
Consider the set of all dependency pairs
1: quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
2: qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
SPACE(?,?)on application of the dependency pairs
{1}
These cover all (indirect) predecessors of dependency pairs
{1,2}
their number of applications is equally bounded.
The dependency pairs are shifted into the weak component.
******* Step 1.b:6.b:4.b:2.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
+ Details:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_7) = {1},
uargs(c_8) = {1}
Following symbols are considered usable:
{app,part,part[False][Ite],part[Ite],<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#,qs#
,quicksort#}
TcT has computed the following interpretation:
p(0) = [1]
p(<) = [1] x1 + [0]
p(>) = [0]
p(Cons) = [1] x2 + [4]
p(False) = [0]
p(Nil) = [0]
p(S) = [1] x1 + [4]
p(True) = [0]
p(app) = [1] x1 + [1] x2 + [0]
p(notEmpty) = [1] x1 + [0]
p(part) = [1] x2 + [1] x3 + [1] x4 + [4]
p(part[False][Ite]) = [1] x3 + [1] x4 + [1] x5 + [4]
p(part[Ite]) = [1] x3 + [1] x4 + [1] x5 + [4]
p(qs) = [0]
p(quicksort) = [1]
p(<#) = [1] x1 + [1] x2 + [1]
p(>#) = [1] x1 + [2]
p(app#) = [4] x1 + [1] x2 + [2]
p(notEmpty#) = [1] x1 + [1]
p(part#) = [2] x3 + [4]
p(part[False][Ite]#) = [4] x4 + [1] x5 + [0]
p(part[Ite]#) = [1] x1 + [1] x2 + [2] x3 + [1] x5 + [1]
p(qs#) = [1] x2 + [0]
p(quicksort#) = [1] x1 + [1]
p(c_1) = [1] x1 + [0]
p(c_2) = [1]
p(c_3) = [0]
p(c_4) = [1]
p(c_5) = [1]
p(c_6) = [1] x1 + [2]
p(c_7) = [1] x1 + [3]
p(c_8) = [1] x1 + [0]
p(c_9) = [0]
p(c_10) = [0]
p(c_11) = [2]
p(c_12) = [0]
p(c_13) = [2] x1 + [0]
p(c_14) = [1]
p(c_15) = [0]
p(c_16) = [1] x1 + [0]
p(c_17) = [2] x1 + [4]
p(c_18) = [1] x1 + [0]
p(c_19) = [0]
p(c_20) = [1]
Following rules are strictly oriented:
quicksort#(Cons(x,Cons(x',xs))) = [1] xs + [9]
> [1] xs + [8]
= c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil())),part#(x,Cons(x',xs),Nil(),Nil()))
Following rules are (at-least) weakly oriented:
qs#(x',Cons(x,xs)) = [1] xs + [4]
>= [1] xs + [4]
= c_7(quicksort#(xs))
app(Cons(x,xs),ys) = [1] xs + [1] ys + [4]
>= [1] xs + [1] ys + [4]
= Cons(x,app(xs,ys))
app(Nil(),ys) = [1] ys + [0]
>= [1] ys + [0]
= ys
part(x,Nil(),xs1,xs2) = [1] xs1 + [1] xs2 + [4]
>= [1] xs1 + [1] xs2 + [0]
= app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [8]
>= [1] xs + [1] xs1 + [1] xs2 + [8]
= part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [8]
>= [1] xs + [1] xs1 + [1] xs2 + [4]
= part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [8]
>= [1] xs + [1] xs1 + [1] xs2 + [8]
= part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [8]
>= [1] xs + [1] xs1 + [1] xs2 + [8]
= part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [8]
>= [1] xs + [1] xs1 + [1] xs2 + [8]
= part(x',xs,Cons(x,xs1),xs2)
******* Step 1.b:6.b:4.b:2.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
+ Details:
()
******* Step 1.b:6.b:4.b:2.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:W:qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
-->_1 quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil())):2
2:W:quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
-->_1 qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
2: quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
******* Step 1.b:6.b:4.b:2.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
****** Step 1.b:6.b:4.b:2.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
- Weak DPs:
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> quicksort#(xs)
quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
+ Details:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
1: part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
Consider the set of all dependency pairs
1: part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
2: part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
3: part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
4: part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
5: part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
6: qs#(x',Cons(x,xs)) -> quicksort#(xs)
7: quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
8: quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
SPACE(?,?)on application of the dependency pairs
{1}
These cover all (indirect) predecessors of dependency pairs
{1,2,3,4,5}
their number of applications is equally bounded.
The dependency pairs are shifted into the weak component.
******* Step 1.b:6.b:4.b:2.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
- Weak DPs:
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> quicksort#(xs)
quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
+ Details:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_6) = {1},
uargs(c_17) = {1},
uargs(c_18) = {1},
uargs(c_19) = {1},
uargs(c_20) = {1}
Following symbols are considered usable:
{app,part,part[False][Ite],part[Ite],<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#,qs#
,quicksort#}
TcT has computed the following interpretation:
p(0) = [0]
p(<) = [0]
p(>) = [0]
p(Cons) = [1] x2 + [1]
p(False) = [0]
p(Nil) = [0]
p(S) = [0]
p(True) = [0]
p(app) = [1] x1 + [1] x2 + [0]
p(notEmpty) = [4] x1 + [2]
p(part) = [1] x2 + [1] x3 + [1] x4 + [0]
p(part[False][Ite]) = [1] x3 + [1] x4 + [1] x5 + [0]
p(part[Ite]) = [1] x3 + [1] x4 + [1] x5 + [0]
p(qs) = [2] x2 + [1]
p(quicksort) = [1] x1 + [0]
p(<#) = [0]
p(>#) = [4] x1 + [1] x2 + [0]
p(app#) = [1] x2 + [1]
p(notEmpty#) = [1]
p(part#) = [4] x2 + [3] x3 + [1] x4 + [5]
p(part[False][Ite]#) = [4] x3 + [3] x4 + [1] x5 + [3]
p(part[Ite]#) = [4] x3 + [3] x4 + [1] x5 + [4]
p(qs#) = [6] x2 + [6]
p(quicksort#) = [6] x1 + [0]
p(c_1) = [2]
p(c_2) = [1]
p(c_3) = [0]
p(c_4) = [1]
p(c_5) = [0]
p(c_6) = [1] x1 + [0]
p(c_7) = [2]
p(c_8) = [1] x1 + [1] x2 + [0]
p(c_9) = [2]
p(c_10) = [1]
p(c_11) = [0]
p(c_12) = [0]
p(c_13) = [1] x1 + [1]
p(c_14) = [1]
p(c_15) = [1]
p(c_16) = [4]
p(c_17) = [1] x1 + [2]
p(c_18) = [1] x1 + [0]
p(c_19) = [1] x1 + [0]
p(c_20) = [1] x1 + [0]
Following rules are strictly oriented:
part#(x',Cons(x,xs),xs1,xs2) = [4] xs + [3] xs1 + [1] xs2 + [9]
> [4] xs + [3] xs1 + [1] xs2 + [8]
= c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
Following rules are (at-least) weakly oriented:
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) = [4] xs + [3] xs1 + [1] xs2 + [7]
>= [4] xs + [3] xs1 + [1] xs2 + [7]
= c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) = [4] xs + [3] xs1 + [1] xs2 + [7]
>= [4] xs + [3] xs1 + [1] xs2 + [6]
= c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) = [4] xs + [3] xs1 + [1] xs2 + [8]
>= [4] xs + [3] xs1 + [1] xs2 + [7]
= c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) = [4] xs + [3] xs1 + [1] xs2 + [8]
>= [4] xs + [3] xs1 + [1] xs2 + [8]
= c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) = [6] xs + [12]
>= [6] xs + [0]
= quicksort#(xs)
quicksort#(Cons(x,Cons(x',xs))) = [6] xs + [12]
>= [4] xs + [9]
= part#(x,Cons(x',xs),Nil(),Nil())
quicksort#(Cons(x,Cons(x',xs))) = [6] xs + [12]
>= [6] xs + [12]
= qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
app(Cons(x,xs),ys) = [1] xs + [1] ys + [1]
>= [1] xs + [1] ys + [1]
= Cons(x,app(xs,ys))
app(Nil(),ys) = [1] ys + [0]
>= [1] ys + [0]
= ys
part(x,Nil(),xs1,xs2) = [1] xs1 + [1] xs2 + [0]
>= [1] xs1 + [1] xs2 + [0]
= app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [1]
>= [1] xs + [1] xs1 + [1] xs2 + [1]
= part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [1]
>= [1] xs + [1] xs1 + [1] xs2 + [0]
= part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [1]
>= [1] xs + [1] xs1 + [1] xs2 + [1]
= part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [1]
>= [1] xs + [1] xs1 + [1] xs2 + [1]
= part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [1]
>= [1] xs + [1] xs1 + [1] xs2 + [1]
= part(x',xs,Cons(x,xs1),xs2)
******* Step 1.b:6.b:4.b:2.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> quicksort#(xs)
quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
+ Details:
()
******* Step 1.b:6.b:4.b:2.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
qs#(x',Cons(x,xs)) -> quicksort#(xs)
quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:W:part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
-->_1 part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2)):5
-->_1 part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2)):4
2:W:part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):1
3:W:part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):1
4:W:part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
-->_1 part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2))):3
-->_1 part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2)):2
5:W:part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):1
6:W:qs#(x',Cons(x,xs)) -> quicksort#(xs)
-->_1 quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil())):8
-->_1 quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil()):7
7:W:quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):1
8:W:quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
-->_1 qs#(x',Cons(x,xs)) -> quicksort#(xs):6
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
6: qs#(x',Cons(x,xs)) -> quicksort#(xs)
8: quicksort#(Cons(x,Cons(x',xs))) -> qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
7: quicksort#(Cons(x,Cons(x',xs))) -> part#(x,Cons(x',xs),Nil(),Nil())
1: part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
5: part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
3: part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
4: part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
2: part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
******* Step 1.b:6.b:4.b:2.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
***** Step 1.b:6.b:4.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak DPs:
part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:S:qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
-->_1 quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil())):2
2:S:quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
-->_2 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):3
-->_1 qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs)):1
3:W:part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
-->_1 part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2)):7
-->_1 part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2)):6
4:W:part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):3
5:W:part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):3
6:W:part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
-->_1 part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2))):5
-->_1 part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2)):4
7:W:part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
-->_1 part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2)):3
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
3: part#(x',Cons(x,xs),xs1,xs2) -> c_6(part[Ite]#(>(x',x),x',Cons(x,xs),xs1,xs2))
7: part[Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_20(part#(x',xs,Cons(x,xs1),xs2))
5: part[False][Ite]#(True(),x',Cons(x,xs),xs1,xs2) -> c_18(part#(x',xs,xs1,Cons(x,xs2)))
6: part[Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_19(part[False][Ite]#(<(x',x),x',Cons(x,xs),xs1,xs2))
4: part[False][Ite]#(False(),x',Cons(x,xs),xs1,xs2) -> c_17(part#(x',xs,xs1,xs2))
***** Step 1.b:6.b:4.b:2.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/2,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
SimplifyRHS
+ Details:
Consider the dependency graph
1:S:qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
-->_1 quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil())):2
2:S:quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))
,part#(x,Cons(x',xs),Nil(),Nil()))
-->_1 qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs)):1
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil())))
***** Step 1.b:6.b:4.b:2.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil())))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/1,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
+ Details:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
1: qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
Consider the set of all dependency pairs
1: qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
2: quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil())))
Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
SPACE(?,?)on application of the dependency pairs
{1}
These cover all (indirect) predecessors of dependency pairs
{1,2}
their number of applications is equally bounded.
The dependency pairs are shifted into the weak component.
****** Step 1.b:6.b:4.b:2.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil())))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/1,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
+ Details:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_7) = {1},
uargs(c_8) = {1}
Following symbols are considered usable:
{>,app,part,part[False][Ite],part[Ite],<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#,qs#
,quicksort#}
TcT has computed the following interpretation:
p(0) = [4]
p(<) = [0]
p(>) = [0]
p(Cons) = [1] x2 + [4]
p(False) = [0]
p(Nil) = [3]
p(S) = [0]
p(True) = [0]
p(app) = [1] x1 + [1] x2 + [0]
p(notEmpty) = [1]
p(part) = [1] x2 + [1] x3 + [1] x4 + [1]
p(part[False][Ite]) = [1] x3 + [1] x4 + [1] x5 + [1]
p(part[Ite]) = [1] x3 + [1] x4 + [1] x5 + [1]
p(qs) = [1] x1 + [0]
p(quicksort) = [1]
p(<#) = [2] x2 + [0]
p(>#) = [1] x1 + [0]
p(app#) = [2] x2 + [1]
p(notEmpty#) = [2]
p(part#) = [2] x1 + [1] x4 + [0]
p(part[False][Ite]#) = [2] x2 + [2]
p(part[Ite]#) = [2] x1 + [1] x2 + [0]
p(qs#) = [1] x2 + [0]
p(quicksort#) = [1] x1 + [3]
p(c_1) = [2]
p(c_2) = [4]
p(c_3) = [0]
p(c_4) = [0]
p(c_5) = [0]
p(c_6) = [4] x1 + [1]
p(c_7) = [1] x1 + [0]
p(c_8) = [1] x1 + [0]
p(c_9) = [1]
p(c_10) = [0]
p(c_11) = [1]
p(c_12) = [0]
p(c_13) = [1]
p(c_14) = [1]
p(c_15) = [0]
p(c_16) = [4]
p(c_17) = [4] x1 + [1]
p(c_18) = [2] x1 + [0]
p(c_19) = [1] x1 + [0]
p(c_20) = [4]
Following rules are strictly oriented:
qs#(x',Cons(x,xs)) = [1] xs + [4]
> [1] xs + [3]
= c_7(quicksort#(xs))
Following rules are (at-least) weakly oriented:
quicksort#(Cons(x,Cons(x',xs))) = [1] xs + [11]
>= [1] xs + [11]
= c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil())))
>(0(),y) = [0]
>= [0]
= False()
>(S(x),0()) = [0]
>= [0]
= True()
>(S(x),S(y)) = [0]
>= [0]
= >(x,y)
app(Cons(x,xs),ys) = [1] xs + [1] ys + [4]
>= [1] xs + [1] ys + [4]
= Cons(x,app(xs,ys))
app(Nil(),ys) = [1] ys + [3]
>= [1] ys + [0]
= ys
part(x,Nil(),xs1,xs2) = [1] xs1 + [1] xs2 + [4]
>= [1] xs1 + [1] xs2 + [0]
= app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [5]
>= [1] xs + [1] xs1 + [1] xs2 + [5]
= part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [5]
>= [1] xs + [1] xs1 + [1] xs2 + [1]
= part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [5]
>= [1] xs + [1] xs1 + [1] xs2 + [5]
= part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [5]
>= [1] xs + [1] xs1 + [1] xs2 + [5]
= part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) = [1] xs + [1] xs1 + [1] xs2 + [5]
>= [1] xs + [1] xs1 + [1] xs2 + [5]
= part(x',xs,Cons(x,xs1),xs2)
****** Step 1.b:6.b:4.b:2.b:3.a:2: Assumption WORST_CASE(?,O(1))
+ Considered Problem:
- Strict DPs:
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil())))
- Weak DPs:
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/1,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
+ Details:
()
****** Step 1.b:6.b:4.b:2.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil())))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/1,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:W:qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
-->_1 quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil()))):2
2:W:quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil())))
-->_1 qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: qs#(x',Cons(x,xs)) -> c_7(quicksort#(xs))
2: quicksort#(Cons(x,Cons(x',xs))) -> c_8(qs#(x,part(x,Cons(x',xs),Nil(),Nil())))
****** Step 1.b:6.b:4.b:2.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
>(0(),y) -> False()
>(S(x),0()) -> True()
>(S(x),S(y)) -> >(x,y)
app(Cons(x,xs),ys) -> Cons(x,app(xs,ys))
app(Nil(),ys) -> ys
part(x,Nil(),xs1,xs2) -> app(xs1,xs2)
part(x',Cons(x,xs),xs1,xs2) -> part[Ite](>(x',x),x',Cons(x,xs),xs1,xs2)
part[False][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,xs2)
part[False][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,xs1,Cons(x,xs2))
part[Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[False][Ite](<(x',x),x',Cons(x,xs),xs1,xs2)
part[Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2)
- Signature:
{2,>/2,app/2,notEmpty/1,part/4,part[False][Ite]/5,part[Ite]/5,qs/2,quicksort/1,<#/2,>#/2,app#/2
,notEmpty#/1,part#/4,part[False][Ite]#/5,part[Ite]#/5,qs#/2,quicksort#/1} / {0/0,Cons/2,False/0,Nil/0,S/1
,True/0,c_1/1,c_2/0,c_3/0,c_4/0,c_5/0,c_6/1,c_7/1,c_8/1,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0,c_15/0
,c_16/1,c_17/1,c_18/1,c_19/1,c_20/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {<#,>#,app#,notEmpty#,part#,part[False][Ite]#,part[Ite]#
,qs#,quicksort#} and constructors {0,Cons,False,Nil,S,True}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(Omega(n^1),O(n^2))