* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            add0(x,0()) -> x
            add0(x',S(x)) -> +(S(0()),add0(x',x))
            mult(x,0()) -> 0()
            mult(x',S(x)) -> add0(x',mult(x',x))
            power(x,0()) -> S(0())
            power(x',S(x)) -> mult(x',power(x',x))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
        - Signature:
            {+/2,add0/2,mult/2,power/2} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+,add0,mult,power} and constructors {0,S}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            add0(x,0()) -> x
            add0(x',S(x)) -> +(S(0()),add0(x',x))
            mult(x,0()) -> 0()
            mult(x',S(x)) -> add0(x',mult(x',x))
            power(x,0()) -> S(0())
            power(x',S(x)) -> mult(x',power(x',x))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
        - Signature:
            {+/2,add0/2,mult/2,power/2} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+,add0,mult,power} and constructors {0,S}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          add0(x,y){y -> S(y)} =
            add0(x,S(y)) ->^+ +(S(0()),add0(x,y))
              = C[add0(x,y) = add0(x,y){}]

WORST_CASE(Omega(n^1),?)