* Step 1: Sum WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(0(),x2) -> 0()
            f(S(x),x2) -> f(x2,x)
        - Signature:
            {f/2} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f} and constructors {0,S}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(0(),x2) -> 0()
            f(S(x),x2) -> f(x2,x)
        - Signature:
            {f/2} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f} and constructors {0,S}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 1.
        The enriched problem is compatible with follwoing automaton.
          0_0() -> 2
          0_1() -> 1
          S_0(2) -> 2
          f_0(2,2) -> 1
          f_1(2,2) -> 1
* Step 3: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            f(0(),x2) -> 0()
            f(S(x),x2) -> f(x2,x)
        - Signature:
            {f/2} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f} and constructors {0,S}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))