* Step 1: Sum WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: even(0()) -> S(0()) even(S(x)) -> odd(x) odd(0()) -> 0() odd(S(x)) -> even(x) - Signature: {even/1,odd/1} / {0/0,S/1} - Obligation: innermost runtime complexity wrt. defined symbols {even,odd} and constructors {0,S} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: even(0()) -> S(0()) even(S(x)) -> odd(x) odd(0()) -> 0() odd(S(x)) -> even(x) - Signature: {even/1,odd/1} / {0/0,S/1} - Obligation: innermost runtime complexity wrt. defined symbols {even,odd} and constructors {0,S} + Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} + Details: The problem is match-bounded by 1. The enriched problem is compatible with follwoing automaton. 0_0() -> 2 0_1() -> 1 0_1() -> 3 S_0(2) -> 2 S_1(3) -> 1 even_0(2) -> 1 even_1(2) -> 1 odd_0(2) -> 1 odd_1(2) -> 1 * Step 3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: even(0()) -> S(0()) even(S(x)) -> odd(x) odd(0()) -> 0() odd(S(x)) -> even(x) - Signature: {even/1,odd/1} / {0/0,S/1} - Obligation: innermost runtime complexity wrt. defined symbols {even,odd} and constructors {0,S} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))