* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) inssort(xs) -> isort(xs,Nil()) isort(Cons(x,xs),r) -> isort(xs,insert(x,r)) isort(Nil(),r) -> Nil() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,insert,insert[Ite],inssort,isort} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) inssort(xs) -> isort(xs,Nil()) isort(Cons(x,xs),r) -> isort(xs,insert(x,r)) isort(Nil(),r) -> Nil() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,insert,insert[Ite],inssort,isort} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: isort(y,z){y -> Cons(x,y)} = isort(Cons(x,y),z) ->^+ isort(y,insert(x,z)) = C[isort(y,insert(x,z)) = isort(y,z){z -> insert(x,z)}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) inssort(xs) -> isort(xs,Nil()) isort(Cons(x,xs),r) -> isort(xs,insert(x,r)) isort(Nil(),r) -> Nil() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,insert,insert[Ite],inssort,isort} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) inssort#(xs) -> c_2(isort#(xs,Nil())) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) isort#(Nil(),r) -> c_4() Weak DPs <#(x,0()) -> c_5() <#(0(),S(y)) -> c_6() <#(S(x),S(y)) -> c_7(<#(x,y)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) insert[Ite]#(True(),x,r) -> c_9() and mark the set of starting terms. ** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) inssort#(xs) -> c_2(isort#(xs,Nil())) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) isort#(Nil(),r) -> c_4() - Weak DPs: <#(x,0()) -> c_5() <#(0(),S(y)) -> c_6() <#(S(x),S(y)) -> c_7(<#(x,y)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) insert[Ite]#(True(),x,r) -> c_9() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) inssort(xs) -> isort(xs,Nil()) isort(Cons(x,xs),r) -> isort(xs,insert(x,r)) isort(Nil(),r) -> Nil() - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) <#(x,0()) -> c_5() <#(0(),S(y)) -> c_6() <#(S(x),S(y)) -> c_7(<#(x,y)) insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) insert[Ite]#(True(),x,r) -> c_9() inssort#(xs) -> c_2(isort#(xs,Nil())) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) isort#(Nil(),r) -> c_4() ** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) inssort#(xs) -> c_2(isort#(xs,Nil())) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) isort#(Nil(),r) -> c_4() - Weak DPs: <#(x,0()) -> c_5() <#(0(),S(y)) -> c_6() <#(S(x),S(y)) -> c_7(<#(x,y)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) insert[Ite]#(True(),x,r) -> c_9() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {4} by application of Pre({4}) = {2,3}. Here rules are labelled as follows: 1: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) 2: inssort#(xs) -> c_2(isort#(xs,Nil())) 3: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) 4: isort#(Nil(),r) -> c_4() 5: <#(x,0()) -> c_5() 6: <#(0(),S(y)) -> c_6() 7: <#(S(x),S(y)) -> c_7(<#(x,y)) 8: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) 9: insert[Ite]#(True(),x,r) -> c_9() ** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) inssort#(xs) -> c_2(isort#(xs,Nil())) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) - Weak DPs: <#(x,0()) -> c_5() <#(0(),S(y)) -> c_6() <#(S(x),S(y)) -> c_7(<#(x,y)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) insert[Ite]#(True(),x,r) -> c_9() isort#(Nil(),r) -> c_4() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):7 -->_2 <#(S(x),S(y)) -> c_7(<#(x,y)):6 -->_1 insert[Ite]#(True(),x,r) -> c_9():8 -->_2 <#(x,0()) -> c_5():4 2:S:inssort#(xs) -> c_2(isort#(xs,Nil())) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3 -->_1 isort#(Nil(),r) -> c_4():9 3:S:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) -->_1 isort#(Nil(),r) -> c_4():9 -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3 -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)):1 4:W:<#(x,0()) -> c_5() 5:W:<#(0(),S(y)) -> c_6() 6:W:<#(S(x),S(y)) -> c_7(<#(x,y)) -->_1 <#(S(x),S(y)) -> c_7(<#(x,y)):6 -->_1 <#(0(),S(y)) -> c_6():5 -->_1 <#(x,0()) -> c_5():4 7:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)):1 8:W:insert[Ite]#(True(),x,r) -> c_9() 9:W:isort#(Nil(),r) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 9: isort#(Nil(),r) -> c_4() 8: insert[Ite]#(True(),x,r) -> c_9() 6: <#(S(x),S(y)) -> c_7(<#(x,y)) 4: <#(x,0()) -> c_5() 5: <#(0(),S(y)) -> c_6() ** Step 1.b:5: SimplifyRHS WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) inssort#(xs) -> c_2(isort#(xs,Nil())) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) - Weak DPs: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/2,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)) -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):7 2:S:inssort#(xs) -> c_2(isort#(xs,Nil())) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3 3:S:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3 -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)):1 7:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r),<#(S(x),x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) ** Step 1.b:6: RemoveHeads WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) inssort#(xs) -> c_2(isort#(xs,Nil())) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) - Weak DPs: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):4 2:S:inssort#(xs) -> c_2(isort#(xs,Nil())) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3 3:S:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3 -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):1 4:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,inssort#(xs) -> c_2(isort#(xs,Nil())))] ** Step 1.b:7: Decompose WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) - Weak DPs: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) - Weak DPs: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} Problem (S) - Strict DPs: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) - Weak DPs: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} *** Step 1.b:7.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) - Weak DPs: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) Consider the set of all dependency pairs 1: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) 3: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) 4: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,4} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. **** Step 1.b:7.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) - Weak DPs: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_3) = {1,2}, uargs(c_8) = {1} Following symbols are considered usable: {insert,insert[Ite],<#,insert#,insert[Ite]#,inssort#,isort#} TcT has computed the following interpretation: p(0) = 0 p(<) = x2 p(Cons) = 1 + x1 + x2 p(False) = 1 p(Nil) = 1 p(S) = 1 p(True) = 1 p(insert) = 1 + 2*x1 + x2 p(insert[Ite]) = 1 + 2*x2 + x3 p(inssort) = 1 + x1^2 p(isort) = x1*x2 p(<#) = x2 + 2*x2^2 p(insert#) = 1 + x1 + x1^2 + x2 p(insert[Ite]#) = x2 + x2^2 + x3 p(inssort#) = 2*x1^2 p(isort#) = 2 + x1*x2 + x1^2 p(c_1) = x1 p(c_2) = 1 p(c_3) = x1 + x2 p(c_4) = 0 p(c_5) = 0 p(c_6) = 1 p(c_7) = 0 p(c_8) = x1 p(c_9) = 1 Following rules are strictly oriented: insert#(S(x),r) = 3 + r > 2 + r = c_1(insert[Ite]#(<(S(x),x),S(x),r)) Following rules are (at-least) weakly oriented: insert[Ite]#(False(),x',Cons(x,xs)) = 1 + x + x' + x'^2 + xs >= 1 + x' + x'^2 + xs = c_8(insert#(x',xs)) isort#(Cons(x,xs),r) = 3 + r + r*x + r*xs + 2*x + 2*x*xs + x^2 + 2*xs + xs^2 >= 3 + r + r*xs + x + 2*x*xs + x^2 + xs + xs^2 = c_3(isort#(xs,insert(x,r)),insert#(x,r)) insert(S(x),r) = 3 + r >= 3 + r = insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) = 2 + x + 2*x' + xs >= 2 + x + 2*x' + xs = Cons(x,insert(x',xs)) insert[Ite](True(),x,r) = 1 + r + 2*x >= 1 + r + x = Cons(x,r) **** Step 1.b:7.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 1.b:7.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):2 2:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):1 3:W:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):3 -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) 1: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) 2: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) **** Step 1.b:7.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 1.b:7.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) - Weak DPs: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) -->_2 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):2 -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):1 2:W:insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) -->_1 insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)):3 3:W:insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) -->_1 insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: insert#(S(x),r) -> c_1(insert[Ite]#(<(S(x),x),S(x),r)) 3: insert[Ite]#(False(),x',Cons(x,xs)) -> c_8(insert#(x',xs)) *** Step 1.b:7.b:2: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/2,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r)),insert#(x,r)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) *** Step 1.b:7.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) The strictly oriented rules are moved into the weak component. **** Step 1.b:7.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1} Following symbols are considered usable: {<#,insert#,insert[Ite]#,inssort#,isort#} TcT has computed the following interpretation: p(0) = [0] p(<) = [0] p(Cons) = [1] x2 + [9] p(False) = [0] p(Nil) = [0] p(S) = [1] x1 + [0] p(True) = [0] p(insert) = [0] p(insert[Ite]) = [0] p(inssort) = [0] p(isort) = [0] p(<#) = [0] p(insert#) = [0] p(insert[Ite]#) = [0] p(inssort#) = [0] p(isort#) = [2] x1 + [9] p(c_1) = [0] p(c_2) = [4] x1 + [0] p(c_3) = [1] x1 + [10] p(c_4) = [0] p(c_5) = [1] p(c_6) = [0] p(c_7) = [0] p(c_8) = [2] x1 + [0] p(c_9) = [8] Following rules are strictly oriented: isort#(Cons(x,xs),r) = [2] xs + [27] > [2] xs + [19] = c_3(isort#(xs,insert(x,r))) Following rules are (at-least) weakly oriented: **** Step 1.b:7.b:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 1.b:7.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) -->_1 isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: isort#(Cons(x,xs),r) -> c_3(isort#(xs,insert(x,r))) **** Step 1.b:7.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) insert(S(x),r) -> insert[Ite](<(S(x),x),S(x),r) insert[Ite](False(),x',Cons(x,xs)) -> Cons(x,insert(x',xs)) insert[Ite](True(),x,r) -> Cons(x,r) - Signature: {2,insert/2,insert[Ite]/3,inssort/1,isort/2,<#/2,insert#/2,insert[Ite]#/3,inssort#/1,isort#/2} / {0/0 ,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {<#,insert#,insert[Ite]#,inssort# ,isort#} and constructors {0,Cons,False,Nil,S,True} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))