(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxRelTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
monus(S(x'), S(x)) → monus(x', x)
gcd(x, y) → gcd[Ite](equal0(x, y), x, y)
equal0(a, b) → equal0[Ite](<(a, b), a, b)
The (relative) TRS S consists of the following rules:
<(S(x), S(y)) → <(x, y)
<(0, S(y)) → True
<(x, 0) → False
gcd[Ite](False, x, y) → gcd[False][Ite](<(x, y), x, y)
gcd[Ite](True, x, y) → x
gcd[False][Ite](False, x, y) → gcd(y, monus(y, x))
gcd[False][Ite](True, x, y) → gcd(monus(x, y), y)
equal0[Ite](False, a, b) → False
equal0[Ite](True, a, b) → equal0[True][Ite](<(b, a), a, b)
equal0[True][Ite](False, a, b) → False
equal0[True][Ite](True, a, b) → True
Rewrite Strategy: INNERMOST
(1) RelTrsToTrsProof (UPPER BOUND(ID) transformation)
transformed relative TRS to TRS
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
monus(S(x'), S(x)) → monus(x', x)
gcd(x, y) → gcd[Ite](equal0(x, y), x, y)
equal0(a, b) → equal0[Ite](<(a, b), a, b)
<(S(x), S(y)) → <(x, y)
<(0, S(y)) → True
<(x, 0) → False
gcd[Ite](False, x, y) → gcd[False][Ite](<(x, y), x, y)
gcd[Ite](True, x, y) → x
gcd[False][Ite](False, x, y) → gcd(y, monus(y, x))
gcd[False][Ite](True, x, y) → gcd(monus(x, y), y)
equal0[Ite](False, a, b) → False
equal0[Ite](True, a, b) → equal0[True][Ite](<(b, a), a, b)
equal0[True][Ite](False, a, b) → False
equal0[True][Ite](True, a, b) → True
Rewrite Strategy: INNERMOST
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
monus(S(z0), S(z1)) → monus(z0, z1)
gcd(z0, z1) → gcd[Ite](equal0(z0, z1), z0, z1)
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
gcd[Ite](False, z0, z1) → gcd[False][Ite](<(z0, z1), z0, z1)
gcd[Ite](True, z0, z1) → z0
gcd[False][Ite](False, z0, z1) → gcd(z1, monus(z1, z0))
gcd[False][Ite](True, z0, z1) → gcd(monus(z0, z1), z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
EQUAL0(z0, z1) → c2(EQUAL0[ITE](<(z0, z1), z0, z1), <'(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
<'(0, S(z0)) → c4
<'(z0, 0) → c5
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[ITE](True, z0, z1) → c7
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](False, z0, z1) → c10
EQUAL0[ITE](True, z0, z1) → c11(EQUAL0[TRUE][ITE](<(z1, z0), z0, z1), <'(z1, z0))
EQUAL0[TRUE][ITE](False, z0, z1) → c12
EQUAL0[TRUE][ITE](True, z0, z1) → c13
S tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
EQUAL0(z0, z1) → c2(EQUAL0[ITE](<(z0, z1), z0, z1), <'(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
<'(0, S(z0)) → c4
<'(z0, 0) → c5
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[ITE](True, z0, z1) → c7
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](False, z0, z1) → c10
EQUAL0[ITE](True, z0, z1) → c11(EQUAL0[TRUE][ITE](<(z1, z0), z0, z1), <'(z1, z0))
EQUAL0[TRUE][ITE](False, z0, z1) → c12
EQUAL0[TRUE][ITE](True, z0, z1) → c13
K tuples:none
Defined Rule Symbols:
monus, gcd, equal0, <, gcd[Ite], gcd[False][Ite], equal0[Ite], equal0[True][Ite]
Defined Pair Symbols:
MONUS, GCD, EQUAL0, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0[TRUE][ITE]
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 6 trailing nodes:
EQUAL0[TRUE][ITE](True, z0, z1) → c13
<'(z0, 0) → c5
GCD[ITE](True, z0, z1) → c7
EQUAL0[TRUE][ITE](False, z0, z1) → c12
<'(0, S(z0)) → c4
EQUAL0[ITE](False, z0, z1) → c10
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
monus(S(z0), S(z1)) → monus(z0, z1)
gcd(z0, z1) → gcd[Ite](equal0(z0, z1), z0, z1)
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
gcd[Ite](False, z0, z1) → gcd[False][Ite](<(z0, z1), z0, z1)
gcd[Ite](True, z0, z1) → z0
gcd[False][Ite](False, z0, z1) → gcd(z1, monus(z1, z0))
gcd[False][Ite](True, z0, z1) → gcd(monus(z0, z1), z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
EQUAL0(z0, z1) → c2(EQUAL0[ITE](<(z0, z1), z0, z1), <'(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(EQUAL0[TRUE][ITE](<(z1, z0), z0, z1), <'(z1, z0))
S tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
EQUAL0(z0, z1) → c2(EQUAL0[ITE](<(z0, z1), z0, z1), <'(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(EQUAL0[TRUE][ITE](<(z1, z0), z0, z1), <'(z1, z0))
K tuples:none
Defined Rule Symbols:
monus, gcd, equal0, <, gcd[Ite], gcd[False][Ite], equal0[Ite], equal0[True][Ite]
Defined Pair Symbols:
MONUS, GCD, EQUAL0, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE]
Compound Symbols:
c, c1, c2, c3, c6, c8, c9, c11
(7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
monus(S(z0), S(z1)) → monus(z0, z1)
gcd(z0, z1) → gcd[Ite](equal0(z0, z1), z0, z1)
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
gcd[Ite](False, z0, z1) → gcd[False][Ite](<(z0, z1), z0, z1)
gcd[Ite](True, z0, z1) → z0
gcd[False][Ite](False, z0, z1) → gcd(z1, monus(z1, z0))
gcd[False][Ite](True, z0, z1) → gcd(monus(z0, z1), z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
EQUAL0(z0, z1) → c2(EQUAL0[ITE](<(z0, z1), z0, z1), <'(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
S tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
EQUAL0(z0, z1) → c2(EQUAL0[ITE](<(z0, z1), z0, z1), <'(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
K tuples:none
Defined Rule Symbols:
monus, gcd, equal0, <, gcd[Ite], gcd[False][Ite], equal0[Ite], equal0[True][Ite]
Defined Pair Symbols:
MONUS, GCD, EQUAL0, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE]
Compound Symbols:
c, c1, c2, c3, c6, c8, c9, c11
(9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
monus(S(z0), S(z1)) → monus(z0, z1)
gcd(z0, z1) → gcd[Ite](equal0(z0, z1), z0, z1)
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
gcd[Ite](False, z0, z1) → gcd[False][Ite](<(z0, z1), z0, z1)
gcd[Ite](True, z0, z1) → z0
gcd[False][Ite](False, z0, z1) → gcd(z1, monus(z1, z0))
gcd[False][Ite](True, z0, z1) → gcd(monus(z0, z1), z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
S tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
K tuples:none
Defined Rule Symbols:
monus, gcd, equal0, <, gcd[Ite], gcd[False][Ite], equal0[Ite], equal0[True][Ite]
Defined Pair Symbols:
MONUS, GCD, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0
Compound Symbols:
c, c1, c3, c6, c8, c9, c11, c4
(11) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
gcd(z0, z1) → gcd[Ite](equal0(z0, z1), z0, z1)
gcd[Ite](False, z0, z1) → gcd[False][Ite](<(z0, z1), z0, z1)
gcd[Ite](True, z0, z1) → z0
gcd[False][Ite](False, z0, z1) → gcd(z1, monus(z1, z0))
gcd[False][Ite](True, z0, z1) → gcd(monus(z0, z1), z1)
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
monus(S(z0), S(z1)) → monus(z0, z1)
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
S tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
K tuples:none
Defined Rule Symbols:
equal0, equal0[Ite], <, equal0[True][Ite], monus
Defined Pair Symbols:
MONUS, GCD, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0
Compound Symbols:
c, c1, c3, c6, c8, c9, c11, c4
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
We considered the (Usable) Rules:
monus(S(z0), S(z1)) → monus(z0, z1)
And the Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(<(x1, x2)) = 0
POL(<'(x1, x2)) = 0
POL(EQUAL0(x1, x2)) = 0
POL(EQUAL0[ITE](x1, x2, x3)) = 0
POL(False) = [2]
POL(GCD(x1, x2)) = x1 + [2]x2
POL(GCD[FALSE][ITE](x1, x2, x3)) = x2 + [2]x3
POL(GCD[ITE](x1, x2, x3)) = x2 + [2]x3
POL(MONUS(x1, x2)) = x1
POL(S(x1)) = [2] + x1
POL(True) = 0
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(equal0(x1, x2)) = [3] + [3]x1
POL(equal0[Ite](x1, x2, x3)) = [2]
POL(equal0[True][Ite](x1, x2, x3)) = [2]x1
POL(monus(x1, x2)) = 0
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
monus(S(z0), S(z1)) → monus(z0, z1)
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
S tuples:
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
K tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
Defined Rule Symbols:
equal0, equal0[Ite], <, equal0[True][Ite], monus
Defined Pair Symbols:
MONUS, GCD, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0
Compound Symbols:
c, c1, c3, c6, c8, c9, c11, c4
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
We considered the (Usable) Rules:
<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
<(0, S(z0)) → True
<(S(z0), S(z1)) → <(z0, z1)
And the Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(<(x1, x2)) = x1
POL(<'(x1, x2)) = 0
POL(EQUAL0(x1, x2)) = x1
POL(EQUAL0[ITE](x1, x2, x3)) = x1
POL(False) = 0
POL(GCD(x1, x2)) = x1 + x2
POL(GCD[FALSE][ITE](x1, x2, x3)) = x3
POL(GCD[ITE](x1, x2, x3)) = x3
POL(MONUS(x1, x2)) = 0
POL(S(x1)) = x1
POL(True) = [1]
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(equal0(x1, x2)) = 0
POL(equal0[Ite](x1, x2, x3)) = 0
POL(equal0[True][Ite](x1, x2, x3)) = 0
POL(monus(x1, x2)) = 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
monus(S(z0), S(z1)) → monus(z0, z1)
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
S tuples:
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
K tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
Defined Rule Symbols:
equal0, equal0[Ite], <, equal0[True][Ite], monus
Defined Pair Symbols:
MONUS, GCD, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0
Compound Symbols:
c, c1, c3, c6, c8, c9, c11, c4
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
We considered the (Usable) Rules:
<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
<(0, S(z0)) → True
<(S(z0), S(z1)) → <(z0, z1)
And the Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(<(x1, x2)) = x1
POL(<'(x1, x2)) = 0
POL(EQUAL0(x1, x2)) = 0
POL(EQUAL0[ITE](x1, x2, x3)) = 0
POL(False) = 0
POL(GCD(x1, x2)) = x1 + x2
POL(GCD[FALSE][ITE](x1, x2, x3)) = x1 + x3
POL(GCD[ITE](x1, x2, x3)) = x2 + x3
POL(MONUS(x1, x2)) = 0
POL(S(x1)) = x1
POL(True) = [1]
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(equal0(x1, x2)) = 0
POL(equal0[Ite](x1, x2, x3)) = 0
POL(equal0[True][Ite](x1, x2, x3)) = 0
POL(monus(x1, x2)) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
monus(S(z0), S(z1)) → monus(z0, z1)
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
S tuples:
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
K tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
Defined Rule Symbols:
equal0, equal0[Ite], <, equal0[True][Ite], monus
Defined Pair Symbols:
MONUS, GCD, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0
Compound Symbols:
c, c1, c3, c6, c8, c9, c11, c4
(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
<'(S(z0), S(z1)) → c3(<'(z0, z1))
We considered the (Usable) Rules:
monus(S(z0), S(z1)) → monus(z0, z1)
And the Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(<(x1, x2)) = 0
POL(<'(x1, x2)) = x1·x2
POL(EQUAL0(x1, x2)) = x1·x2
POL(EQUAL0[ITE](x1, x2, x3)) = x2·x3
POL(False) = 0
POL(GCD(x1, x2)) = [2]x1·x2
POL(GCD[FALSE][ITE](x1, x2, x3)) = 0
POL(GCD[ITE](x1, x2, x3)) = x2·x3
POL(MONUS(x1, x2)) = 0
POL(S(x1)) = [1] + x1
POL(True) = 0
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(equal0(x1, x2)) = [2]x22 + x1·x2
POL(equal0[Ite](x1, x2, x3)) = [1] + [2]x2 + [2]x3 + [2]x2·x3 + x1·x3 + [2]x1·x2
POL(equal0[True][Ite](x1, x2, x3)) = [2]x1 + [2]x2 + x3 + x32 + x1·x3 + [2]x12 + x22
POL(monus(x1, x2)) = 0
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
monus(S(z0), S(z1)) → monus(z0, z1)
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
S tuples:
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
K tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
Defined Rule Symbols:
equal0, equal0[Ite], <, equal0[True][Ite], monus
Defined Pair Symbols:
MONUS, GCD, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0
Compound Symbols:
c, c1, c3, c6, c8, c9, c11, c4
(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
GCD(
z0,
z1) →
c1(
GCD[ITE](
equal0(
z0,
z1),
z0,
z1),
EQUAL0(
z0,
z1)) by
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
monus(S(z0), S(z1)) → monus(z0, z1)
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
S tuples:
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
K tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
Defined Rule Symbols:
equal0, equal0[Ite], <, equal0[True][Ite], monus
Defined Pair Symbols:
MONUS, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0, GCD
Compound Symbols:
c, c3, c6, c8, c9, c11, c4, c1
(23) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
S tuples:
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
K tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
Defined Rule Symbols:
<, monus, equal0[Ite], equal0[True][Ite]
Defined Pair Symbols:
MONUS, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0, GCD
Compound Symbols:
c, c3, c6, c8, c9, c11, c4, c1
(25) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
GCD[ITE](
False,
z0,
z1) →
c6(
GCD[FALSE][ITE](
<(
z0,
z1),
z0,
z1),
<'(
z0,
z1)) by
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)), <'(0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0), <'(z0, 0))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)), <'(0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0), <'(z0, 0))
S tuples:
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)), <'(0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0), <'(z0, 0))
K tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
Defined Rule Symbols:
<, monus, equal0[Ite], equal0[True][Ite]
Defined Pair Symbols:
MONUS, <', GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0, GCD, GCD[ITE]
Compound Symbols:
c, c3, c8, c9, c11, c4, c1, c6
(27) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
S tuples:
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
K tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
Defined Rule Symbols:
<, monus, equal0[Ite], equal0[True][Ite]
Defined Pair Symbols:
MONUS, <', GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0, GCD, GCD[ITE]
Compound Symbols:
c, c3, c8, c9, c11, c4, c1, c6, c6
(29) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
We considered the (Usable) Rules:
monus(S(z0), S(z1)) → monus(z0, z1)
And the Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(<(x1, x2)) = 0
POL(<'(x1, x2)) = 0
POL(EQUAL0(x1, x2)) = 0
POL(EQUAL0[ITE](x1, x2, x3)) = 0
POL(False) = 0
POL(GCD(x1, x2)) = x1 + x2
POL(GCD[FALSE][ITE](x1, x2, x3)) = x3
POL(GCD[ITE](x1, x2, x3)) = x2 + x3
POL(MONUS(x1, x2)) = 0
POL(S(x1)) = 0
POL(True) = 0
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(equal0[Ite](x1, x2, x3)) = 0
POL(equal0[True][Ite](x1, x2, x3)) = 0
POL(monus(x1, x2)) = 0
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
S tuples:
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
K tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
Defined Rule Symbols:
<, monus, equal0[Ite], equal0[True][Ite]
Defined Pair Symbols:
MONUS, <', GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0, GCD, GCD[ITE]
Compound Symbols:
c, c3, c8, c9, c11, c4, c1, c6, c6
(31) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
We considered the (Usable) Rules:
monus(S(z0), S(z1)) → monus(z0, z1)
And the Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(<(x1, x2)) = 0
POL(<'(x1, x2)) = 0
POL(EQUAL0(x1, x2)) = 0
POL(EQUAL0[ITE](x1, x2, x3)) = 0
POL(False) = 0
POL(GCD(x1, x2)) = x1 + x2
POL(GCD[FALSE][ITE](x1, x2, x3)) = x3
POL(GCD[ITE](x1, x2, x3)) = x2 + x3
POL(MONUS(x1, x2)) = 0
POL(S(x1)) = [1]
POL(True) = 0
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(equal0[Ite](x1, x2, x3)) = [1]
POL(equal0[True][Ite](x1, x2, x3)) = 0
POL(monus(x1, x2)) = 0
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
S tuples:
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
K tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
Defined Rule Symbols:
<, monus, equal0[Ite], equal0[True][Ite]
Defined Pair Symbols:
MONUS, <', GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0, GCD, GCD[ITE]
Compound Symbols:
c, c3, c8, c9, c11, c4, c1, c6, c6
(33) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
We considered the (Usable) Rules:
monus(S(z0), S(z1)) → monus(z0, z1)
<(z0, 0) → False
<(0, S(z0)) → True
<(S(z0), S(z1)) → <(z0, z1)
And the Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(<(x1, x2)) = [1]
POL(<'(x1, x2)) = 0
POL(EQUAL0(x1, x2)) = [1]
POL(EQUAL0[ITE](x1, x2, x3)) = 0
POL(False) = 0
POL(GCD(x1, x2)) = [2] + x2 + [2]x1·x2
POL(GCD[FALSE][ITE](x1, x2, x3)) = [2] + x1·x3
POL(GCD[ITE](x1, x2, x3)) = x3 + [2]x2·x3
POL(MONUS(x1, x2)) = 0
POL(S(x1)) = [1]
POL(True) = [1]
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(equal0[Ite](x1, x2, x3)) = [2]x2·x3 + [2]x22
POL(equal0[True][Ite](x1, x2, x3)) = [2] + [2]x2 + [2]x3 + x32 + [2]x1·x3 + x1·x2 + x22
POL(monus(x1, x2)) = 0
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
S tuples:
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
K tuples:
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
Defined Rule Symbols:
<, monus, equal0[Ite], equal0[True][Ite]
Defined Pair Symbols:
MONUS, <', GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0, GCD, GCD[ITE]
Compound Symbols:
c, c3, c8, c9, c11, c4, c1, c6, c6
(35) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
Now S is empty
(36) BOUNDS(1, 1)