0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 4 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 368 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 124 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 397 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 141 ms)
↳24 CpxRNTS
↳25 FinalProof (⇔, 0 ms)
↳26 BOUNDS(1, n^1)
g(S(x), y) → g(x, S(y))
f(y, S(x)) → f(S(y), x)
g(0, x2) → x2
f(x1, 0) → g(x1, 0)
g(S(x), y) → g(x, S(y)) [1]
f(y, S(x)) → f(S(y), x) [1]
g(0, x2) → x2 [1]
f(x1, 0) → g(x1, 0) [1]
g(S(x), y) → g(x, S(y)) [1]
f(y, S(x)) → f(S(y), x) [1]
g(0, x2) → x2 [1]
f(x1, 0) → g(x1, 0) [1]
g :: S:0 → S:0 → S:0 S :: S:0 → S:0 f :: S:0 → S:0 → S:0 0 :: S:0 |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
g
f
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
f(z, z') -{ 1 }→ g(x1, 0) :|: x1 >= 0, z = x1, z' = 0
f(z, z') -{ 1 }→ f(1 + y, x) :|: z' = 1 + x, y >= 0, x >= 0, z = y
g(z, z') -{ 1 }→ x2 :|: z' = x2, z = 0, x2 >= 0
g(z, z') -{ 1 }→ g(x, 1 + y) :|: x >= 0, y >= 0, z = 1 + x, z' = y
f(z, z') -{ 1 }→ g(z, 0) :|: z >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + z, z' - 1) :|: z >= 0, z' - 1 >= 0
g(z, z') -{ 1 }→ z' :|: z = 0, z' >= 0
g(z, z') -{ 1 }→ g(z - 1, 1 + z') :|: z - 1 >= 0, z' >= 0
{ g } { f } |
f(z, z') -{ 1 }→ g(z, 0) :|: z >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + z, z' - 1) :|: z >= 0, z' - 1 >= 0
g(z, z') -{ 1 }→ z' :|: z = 0, z' >= 0
g(z, z') -{ 1 }→ g(z - 1, 1 + z') :|: z - 1 >= 0, z' >= 0
f(z, z') -{ 1 }→ g(z, 0) :|: z >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + z, z' - 1) :|: z >= 0, z' - 1 >= 0
g(z, z') -{ 1 }→ z' :|: z = 0, z' >= 0
g(z, z') -{ 1 }→ g(z - 1, 1 + z') :|: z - 1 >= 0, z' >= 0
g: runtime: ?, size: O(n1) [z + z'] |
f(z, z') -{ 1 }→ g(z, 0) :|: z >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + z, z' - 1) :|: z >= 0, z' - 1 >= 0
g(z, z') -{ 1 }→ z' :|: z = 0, z' >= 0
g(z, z') -{ 1 }→ g(z - 1, 1 + z') :|: z - 1 >= 0, z' >= 0
g: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
f(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * 0, z >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + z, z' - 1) :|: z >= 0, z' - 1 >= 0
g(z, z') -{ 1 + z }→ s :|: s >= 0, s <= 1 * (z - 1) + 1 * (1 + z'), z - 1 >= 0, z' >= 0
g(z, z') -{ 1 }→ z' :|: z = 0, z' >= 0
g: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
f(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * 0, z >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + z, z' - 1) :|: z >= 0, z' - 1 >= 0
g(z, z') -{ 1 + z }→ s :|: s >= 0, s <= 1 * (z - 1) + 1 * (1 + z'), z - 1 >= 0, z' >= 0
g(z, z') -{ 1 }→ z' :|: z = 0, z' >= 0
g: runtime: O(n1) [1 + z], size: O(n1) [z + z'] f: runtime: ?, size: O(n1) [z + z'] |
f(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * z + 1 * 0, z >= 0, z' = 0
f(z, z') -{ 1 }→ f(1 + z, z' - 1) :|: z >= 0, z' - 1 >= 0
g(z, z') -{ 1 + z }→ s :|: s >= 0, s <= 1 * (z - 1) + 1 * (1 + z'), z - 1 >= 0, z' >= 0
g(z, z') -{ 1 }→ z' :|: z = 0, z' >= 0
g: runtime: O(n1) [1 + z], size: O(n1) [z + z'] f: runtime: O(n1) [2 + z + 2·z'], size: O(n1) [z + z'] |