* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            eq0(0(),0()) -> S(0())
            eq0(0(),S(x)) -> 0()
            eq0(S(x),0()) -> 0()
            eq0(S(x'),S(x)) -> eq0(x',x)
        - Signature:
            {eq0/2} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq0} and constructors {0,S}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            eq0(0(),0()) -> S(0())
            eq0(0(),S(x)) -> 0()
            eq0(S(x),0()) -> 0()
            eq0(S(x'),S(x)) -> eq0(x',x)
        - Signature:
            {eq0/2} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq0} and constructors {0,S}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          eq0(x,y){x -> S(x),y -> S(y)} =
            eq0(S(x),S(y)) ->^+ eq0(x,y)
              = C[eq0(x,y) = eq0(x,y){}]

** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            eq0(0(),0()) -> S(0())
            eq0(0(),S(x)) -> 0()
            eq0(S(x),0()) -> 0()
            eq0(S(x'),S(x)) -> eq0(x',x)
        - Signature:
            {eq0/2} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq0} and constructors {0,S}
    + Applied Processor:
        Bounds {initialAutomaton = perSymbol, enrichment = match}
    + Details:
        The problem is match-bounded by 1.
        The enriched problem is compatible with follwoing automaton.
          0_0() -> 1
          0_1() -> 3
          0_1() -> 4
          S_0(1) -> 2
          S_0(2) -> 2
          S_1(4) -> 3
          eq0_0(1,1) -> 3
          eq0_0(1,2) -> 3
          eq0_0(2,1) -> 3
          eq0_0(2,2) -> 3
          eq0_1(1,1) -> 3
          eq0_1(1,2) -> 3
          eq0_1(2,1) -> 3
          eq0_1(2,2) -> 3
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            eq0(0(),0()) -> S(0())
            eq0(0(),S(x)) -> 0()
            eq0(S(x),0()) -> 0()
            eq0(S(x'),S(x)) -> eq0(x',x)
        - Signature:
            {eq0/2} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq0} and constructors {0,S}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))