(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

eq0(S(x'), S(x)) → eq0(x', x)
eq0(S(x), 0) → 0
eq0(0, S(x)) → 0
eq0(0, 0) → S(0)

Rewrite Strategy: INNERMOST

(1) TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to weighted TRS

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

eq0(S(x'), S(x)) → eq0(x', x) [1]
eq0(S(x), 0) → 0 [1]
eq0(0, S(x)) → 0 [1]
eq0(0, 0) → S(0) [1]

Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

eq0(S(x'), S(x)) → eq0(x', x) [1]
eq0(S(x), 0) → 0 [1]
eq0(0, S(x)) → 0 [1]
eq0(0, 0) → S(0) [1]

The TRS has the following type information:
eq0 :: S:0 → S:0 → S:0
S :: S:0 → S:0
0 :: S:0

Rewrite Strategy: INNERMOST

(5) CompletionProof (UPPER BOUND(ID) transformation)

The transformation into a RNTS is sound, since:

(a) The obligation is a constructor system where every type has a constant constructor,

(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:


eq0

(c) The following functions are completely defined:
none

Due to the following rules being added:
none

And the following fresh constants: none

(6) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

eq0(S(x'), S(x)) → eq0(x', x) [1]
eq0(S(x), 0) → 0 [1]
eq0(0, S(x)) → 0 [1]
eq0(0, 0) → S(0) [1]

The TRS has the following type information:
eq0 :: S:0 → S:0 → S:0
S :: S:0 → S:0
0 :: S:0

Rewrite Strategy: INNERMOST

(7) NarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Narrowed the inner basic terms of all right-hand sides by a single narrowing step.

(8) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

eq0(S(x'), S(x)) → eq0(x', x) [1]
eq0(S(x), 0) → 0 [1]
eq0(0, S(x)) → 0 [1]
eq0(0, 0) → S(0) [1]

The TRS has the following type information:
eq0 :: S:0 → S:0 → S:0
S :: S:0 → S:0
0 :: S:0

Rewrite Strategy: INNERMOST

(9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID) transformation)

Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction.
The constant constructors are abstracted as follows:

0 => 0

(10) Obligation:

Complexity RNTS consisting of the following rules:

eq0(z, z') -{ 1 }→ eq0(x', x) :|: z = 1 + x', z' = 1 + x, x' >= 0, x >= 0
eq0(z, z') -{ 1 }→ 0 :|: x >= 0, z = 1 + x, z' = 0
eq0(z, z') -{ 1 }→ 0 :|: z' = 1 + x, x >= 0, z = 0
eq0(z, z') -{ 1 }→ 1 + 0 :|: z = 0, z' = 0

(11) SimplificationProof (BOTH BOUNDS(ID, ID) transformation)

Simplified the RNTS by moving equalities from the constraints into the right-hand sides.

(12) Obligation:

Complexity RNTS consisting of the following rules:

eq0(z, z') -{ 1 }→ eq0(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
eq0(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
eq0(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
eq0(z, z') -{ 1 }→ 1 + 0 :|: z = 0, z' = 0

(13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID) transformation)

Found the following analysis order by SCC decomposition:

{ eq0 }

(14) Obligation:

Complexity RNTS consisting of the following rules:

eq0(z, z') -{ 1 }→ eq0(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
eq0(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
eq0(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
eq0(z, z') -{ 1 }→ 1 + 0 :|: z = 0, z' = 0

Function symbols to be analyzed: {eq0}

(15) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: eq0
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(16) Obligation:

Complexity RNTS consisting of the following rules:

eq0(z, z') -{ 1 }→ eq0(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
eq0(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
eq0(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
eq0(z, z') -{ 1 }→ 1 + 0 :|: z = 0, z' = 0

Function symbols to be analyzed: {eq0}
Previous analysis results are:
eq0: runtime: ?, size: O(1) [1]

(17) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using PUBS for: eq0
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 1 + z'

(18) Obligation:

Complexity RNTS consisting of the following rules:

eq0(z, z') -{ 1 }→ eq0(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
eq0(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
eq0(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
eq0(z, z') -{ 1 }→ 1 + 0 :|: z = 0, z' = 0

Function symbols to be analyzed:
Previous analysis results are:
eq0: runtime: O(n1) [1 + z'], size: O(1) [1]

(19) FinalProof (EQUIVALENT transformation)

Computed overall runtime complexity

(20) BOUNDS(1, n^1)