(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
eq0(S(x'), S(x)) → eq0(x', x)
eq0(S(x), 0) → 0
eq0(0, S(x)) → 0
eq0(0, 0) → S(0)
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1]
transitions:
S0(0) → 0
00() → 0
eq00(0, 0) → 1
eq01(0, 0) → 1
01() → 1
01() → 2
S1(2) → 1
(2) BOUNDS(1, n^1)
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
eq0(S(z0), S(z1)) → eq0(z0, z1)
eq0(S(z0), 0) → 0
eq0(0, S(z0)) → 0
eq0(0, 0) → S(0)
Tuples:
EQ0(S(z0), S(z1)) → c(EQ0(z0, z1))
EQ0(S(z0), 0) → c1
EQ0(0, S(z0)) → c2
EQ0(0, 0) → c3
S tuples:
EQ0(S(z0), S(z1)) → c(EQ0(z0, z1))
EQ0(S(z0), 0) → c1
EQ0(0, S(z0)) → c2
EQ0(0, 0) → c3
K tuples:none
Defined Rule Symbols:
eq0
Defined Pair Symbols:
EQ0
Compound Symbols:
c, c1, c2, c3
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
EQ0(0, S(z0)) → c2
EQ0(0, 0) → c3
EQ0(S(z0), 0) → c1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
eq0(S(z0), S(z1)) → eq0(z0, z1)
eq0(S(z0), 0) → 0
eq0(0, S(z0)) → 0
eq0(0, 0) → S(0)
Tuples:
EQ0(S(z0), S(z1)) → c(EQ0(z0, z1))
S tuples:
EQ0(S(z0), S(z1)) → c(EQ0(z0, z1))
K tuples:none
Defined Rule Symbols:
eq0
Defined Pair Symbols:
EQ0
Compound Symbols:
c
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
eq0(S(z0), S(z1)) → eq0(z0, z1)
eq0(S(z0), 0) → 0
eq0(0, S(z0)) → 0
eq0(0, 0) → S(0)
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
EQ0(S(z0), S(z1)) → c(EQ0(z0, z1))
S tuples:
EQ0(S(z0), S(z1)) → c(EQ0(z0, z1))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
EQ0
Compound Symbols:
c
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
EQ0(S(z0), S(z1)) → c(EQ0(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
EQ0(S(z0), S(z1)) → c(EQ0(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(EQ0(x1, x2)) = x2
POL(S(x1)) = [1] + x1
POL(c(x1)) = x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
EQ0(S(z0), S(z1)) → c(EQ0(z0, z1))
S tuples:none
K tuples:
EQ0(S(z0), S(z1)) → c(EQ0(z0, z1))
Defined Rule Symbols:none
Defined Pair Symbols:
EQ0
Compound Symbols:
c
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(1, 1)