* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            bsort(0(),xs) -> xs
            bsort(S(x'),Cons(x,xs)) -> bsort(x',bubble(x,xs))
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubblesort(xs) -> bsort(len(xs),xs)
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
        - Signature:
            {+/2, xs
            bsort(S(x'),Cons(x,xs)) -> bsort(x',bubble(x,xs))
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubblesort(xs) -> bsort(len(xs),xs)
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
        - Signature:
            {+/2, Cons(x,y)} =
            len(Cons(x,y)) ->^+ +(S(0()),len(y))
              = C[len(y) = len(y){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            bsort(0(),xs) -> xs
            bsort(S(x'),Cons(x,xs)) -> bsort(x',bubble(x,xs))
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubblesort(xs) -> bsort(len(xs),xs)
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
        - Signature:
            {+/2, c_1()
          bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          bubble#(x,Nil()) -> c_3()
          bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
          bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
          len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
          len#(Nil()) -> c_7()
        Weak DPs
          +#(x,S(0())) -> c_8()
          +#(S(0()),y) -> c_9()
          <#(x,0()) -> c_10()
          <#(0(),S(y)) -> c_11()
          <#(S(x),S(y)) -> c_12(<#(x,y))
          bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
          bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bsort#(0(),xs) -> c_1()
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x,Nil()) -> c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
            len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
            len#(Nil()) -> c_7()
        - Weak DPs:
            +#(x,S(0())) -> c_8()
            +#(S(0()),y) -> c_9()
            <#(x,0()) -> c_10()
            <#(0(),S(y)) -> c_11()
            <#(S(x),S(y)) -> c_12(<#(x,y))
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bsort(0(),xs) -> xs
            bsort(S(x'),Cons(x,xs)) -> bsort(x',bubble(x,xs))
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            bubblesort(xs) -> bsort(len(xs),xs)
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, S(x)
          +(S(0()),y) -> S(y)
          <(x,0()) -> False()
          <(0(),S(y)) -> True()
          <(S(x),S(y)) -> <(x,y)
          bubble(x,Nil()) -> Cons(x,Nil())
          bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
          bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
          bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
          len(Cons(x,xs)) -> +(S(0()),len(xs))
          len(Nil()) -> 0()
          +#(x,S(0())) -> c_8()
          +#(S(0()),y) -> c_9()
          <#(x,0()) -> c_10()
          <#(0(),S(y)) -> c_11()
          <#(S(x),S(y)) -> c_12(<#(x,y))
          bsort#(0(),xs) -> c_1()
          bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          bubble#(x,Nil()) -> c_3()
          bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
          bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
          bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
          bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
          len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
          len#(Nil()) -> c_7()
** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bsort#(0(),xs) -> c_1()
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x,Nil()) -> c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
            len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
            len#(Nil()) -> c_7()
        - Weak DPs:
            +#(x,S(0())) -> c_8()
            +#(S(0()),y) -> c_9()
            <#(x,0()) -> c_10()
            <#(0(),S(y)) -> c_11()
            <#(S(x),S(y)) -> c_12(<#(x,y))
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_1()
          2: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          3: bubble#(x,Nil()) -> c_3()
          4: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
          5: bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
          6: len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
          7: len#(Nil()) -> c_7()
          8: +#(x,S(0())) -> c_8()
          9: +#(S(0()),y) -> c_9()
          10: <#(x,0()) -> c_10()
          11: <#(0(),S(y)) -> c_11()
          12: <#(S(x),S(y)) -> c_12(<#(x,y))
          13: bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
          14: bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x,Nil()) -> c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
            len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
        - Weak DPs:
            +#(x,S(0())) -> c_8()
            +#(S(0()),y) -> c_9()
            <#(x,0()) -> c_10()
            <#(0(),S(y)) -> c_11()
            <#(S(x),S(y)) -> c_12(<#(x,y))
            bsort#(0(),xs) -> c_1()
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            len#(Nil()) -> c_7()
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
             -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
             -->_1 bsort#(0(),xs) -> c_1():11
             -->_2 bubble#(x,Nil()) -> c_3():2
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
          
          2:S:bubble#(x,Nil()) -> c_3()
             
          
          3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
             -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):13
             -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):12
             -->_2 <#(S(x),S(y)) -> c_12(<#(x,y)):10
             -->_2 <#(0(),S(y)) -> c_11():9
             -->_2 <#(x,0()) -> c_10():8
          
          4:S:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
             -->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5
             -->_2 len#(Nil()) -> c_7():14
             -->_1 bsort#(0(),xs) -> c_1():11
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
          
          5:S:len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
             -->_2 len#(Nil()) -> c_7():14
             -->_1 +#(S(0()),y) -> c_9():7
             -->_1 +#(x,S(0())) -> c_8():6
             -->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5
          
          6:W:+#(x,S(0())) -> c_8()
             
          
          7:W:+#(S(0()),y) -> c_9()
             
          
          8:W:<#(x,0()) -> c_10()
             
          
          9:W:<#(0(),S(y)) -> c_11()
             
          
          10:W:<#(S(x),S(y)) -> c_12(<#(x,y))
             -->_1 <#(S(x),S(y)) -> c_12(<#(x,y)):10
             -->_1 <#(0(),S(y)) -> c_11():9
             -->_1 <#(x,0()) -> c_10():8
          
          11:W:bsort#(0(),xs) -> c_1()
             
          
          12:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
             -->_1 bubble#(x,Nil()) -> c_3():2
          
          13:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
             -->_1 bubble#(x,Nil()) -> c_3():2
          
          14:W:len#(Nil()) -> c_7()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          6: +#(x,S(0())) -> c_8()
          7: +#(S(0()),y) -> c_9()
          14: len#(Nil()) -> c_7()
          11: bsort#(0(),xs) -> c_1()
          10: <#(S(x),S(y)) -> c_12(<#(x,y))
          8: <#(x,0()) -> c_10()
          9: <#(0(),S(y)) -> c_11()
** Step 1.b:5: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x,Nil()) -> c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
            len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
        - Weak DPs:
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
             -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
             -->_2 bubble#(x,Nil()) -> c_3():2
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
          
          2:S:bubble#(x,Nil()) -> c_3()
             
          
          3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x))
             -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):13
             -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):12
          
          4:S:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
             -->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
          
          5:S:len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs))
             -->_2 len#(Cons(x,xs)) -> c_6(+#(S(0()),len(xs)),len#(xs)):5
          
          12:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
             -->_1 bubble#(x,Nil()) -> c_3():2
          
          13:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)),<#(x',x)):3
             -->_1 bubble#(x,Nil()) -> c_3():2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          len#(Cons(x,xs)) -> c_6(len#(xs))
** Step 1.b:6: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x,Nil()) -> c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
            len#(Cons(x,xs)) -> c_6(len#(xs))
        - Weak DPs:
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
              bubble#(x,Nil()) -> c_3()
              bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          - Weak DPs:
              bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
              bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
              bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
              len#(Cons(x,xs)) -> c_6(len#(xs))
          - Weak TRS:
              +(x,S(0())) -> S(x)
              +(S(0()),y) -> S(y)
              <(x,0()) -> False()
              <(0(),S(y)) -> True()
              <(S(x),S(y)) -> <(x,y)
              bubble(x,Nil()) -> Cons(x,Nil())
              bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
              bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
              bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
              len(Cons(x,xs)) -> +(S(0()),len(xs))
              len(Nil()) -> 0()
          - Signature:
              {+/2, c_5(bsort#(len(xs),xs),len#(xs))
              len#(Cons(x,xs)) -> c_6(len#(xs))
          - Weak DPs:
              bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
              bubble#(x,Nil()) -> c_3()
              bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
              bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
              bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
          - Weak TRS:
              +(x,S(0())) -> S(x)
              +(S(0()),y) -> S(y)
              <(x,0()) -> False()
              <(0(),S(y)) -> True()
              <(S(x),S(y)) -> <(x,y)
              bubble(x,Nil()) -> Cons(x,Nil())
              bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
              bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
              bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
              len(Cons(x,xs)) -> +(S(0()),len(xs))
              len(Nil()) -> 0()
          - Signature:
              {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x,Nil()) -> c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        - Weak DPs:
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
            len#(Cons(x,xs)) -> c_6(len#(xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
             -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
             -->_2 bubble#(x,Nil()) -> c_3():2
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
          
          2:S:bubble#(x,Nil()) -> c_3()
             
          
          3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
             -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):7
             -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):6
          
          4:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
             -->_2 len#(Cons(x,xs)) -> c_6(len#(xs)):5
          
          5:W:len#(Cons(x,xs)) -> c_6(len#(xs))
             -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):5
          
          6:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
             -->_1 bubble#(x,Nil()) -> c_3():2
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
          
          7:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
             -->_1 bubble#(x,Nil()) -> c_3():2
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: len#(Cons(x,xs)) -> c_6(len#(xs))
*** Step 1.b:6.a:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x,Nil()) -> c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        - Weak DPs:
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
             -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
             -->_2 bubble#(x,Nil()) -> c_3():2
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
          
          2:S:bubble#(x,Nil()) -> c_3()
             
          
          3:S:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
             -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):7
             -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):6
          
          4:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
          
          6:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
             -->_1 bubble#(x,Nil()) -> c_3():2
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
          
          7:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
             -->_1 bubble#(x,Nil()) -> c_3():2
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):3
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
*** Step 1.b:6.a:3: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x,Nil()) -> c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        - Weak DPs:
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          
        Consider the set of all dependency pairs
          1: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          2: bubble#(x,Nil()) -> c_3()
          3: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          4: bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
          5: bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
          6: bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,6}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
**** Step 1.b:6.a:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x,Nil()) -> c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        - Weak DPs:
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, [1] x' + [0]                              
                                 = c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
        
        
        Following rules are (at-least) weakly oriented:
                                       bubble#(x,Nil()) =  [0]                                                 
                                                        >= [0]                                                 
                                                        =  c_3()                                               
        
                                 bubble#(x',Cons(x,xs)) =  [0]                                                 
                                                        >= [0]                                                 
                                                        =  c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        
        bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) =  [0]                                                 
                                                        >= [0]                                                 
                                                        =  c_13(bubble#(x',xs))                                
        
         bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) =  [0]                                                 
                                                        >= [0]                                                 
                                                        =  c_14(bubble#(x,xs))                                 
        
                                        bubblesort#(xs) =  [2] xs + [4]                                        
                                                        >= [2] xs + [4]                                        
                                                        =  c_5(bsort#(len(xs),xs))                             
        
                                            +(x,S(0())) =  [1] x + [1]                                         
                                                        >= [1] x + [1]                                         
                                                        =  S(x)                                                
        
                                            +(S(0()),y) =  [1] y + [1]                                         
                                                        >= [1] y + [1]                                         
                                                        =  S(y)                                                
        
                                        len(Cons(x,xs)) =  [1] xs + [1]                                        
                                                        >= [1] xs + [1]                                        
                                                        =  +(S(0()),len(xs))                                   
        
                                             len(Nil()) =  [2]                                                 
                                                        >= [0]                                                 
                                                        =  0()                                                 
        
**** Step 1.b:6.a:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            bubble#(x,Nil()) -> c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        - Weak DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        - Weak DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_3()
          
        Consider the set of all dependency pairs
          1: bubble#(x,Nil()) -> c_3()
          2: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          3: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          4: bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
          5: bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
          6: bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,6}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
***** Step 1.b:6.a:3.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            bubble#(x,Nil()) -> c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        - Weak DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, [0]  
                         = c_3()
        
        
        Following rules are (at-least) weakly oriented:
                               bsort#(S(x'),Cons(x,xs)) =  [1] x' + [6]                                        
                                                        >= [1] x' + [6]                                        
                                                        =  c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))          
        
                                 bubble#(x',Cons(x,xs)) =  [1]                                                 
                                                        >= [1]                                                 
                                                        =  c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        
        bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) =  [1]                                                 
                                                        >= [1]                                                 
                                                        =  c_13(bubble#(x',xs))                                
        
         bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) =  [1]                                                 
                                                        >= [1]                                                 
                                                        =  c_14(bubble#(x,xs))                                 
        
                                        bubblesort#(xs) =  [4] xs + [7]                                        
                                                        >= [4] xs + [7]                                        
                                                        =  c_5(bsort#(len(xs),xs))                             
        
                                            +(x,S(0())) =  [1] x + [2]                                         
                                                        >= [1] x + [2]                                         
                                                        =  S(x)                                                
        
                                            +(S(0()),y) =  [1] y + [2]                                         
                                                        >= [1] y + [2]                                         
                                                        =  S(y)                                                
        
                                        len(Cons(x,xs)) =  [4] xs + [4]                                        
                                                        >= [4] xs + [2]                                        
                                                        =  +(S(0()),len(xs))                                   
        
                                             len(Nil()) =  [0]                                                 
                                                        >= [0]                                                 
                                                        =  0()                                                 
        
***** Step 1.b:6.a:3.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        - Weak DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x,Nil()) -> c_3()
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        - Weak DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x,Nil()) -> c_3()
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
             -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):5
             -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):4
          
          2:W:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
             -->_2 bubble#(x,Nil()) -> c_3():3
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):2
             -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1
          
          3:W:bubble#(x,Nil()) -> c_3()
             
          
          4:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
             -->_1 bubble#(x,Nil()) -> c_3():3
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1
          
          5:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
             -->_1 bubble#(x,Nil()) -> c_3():3
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):1
          
          6:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: bubble#(x,Nil()) -> c_3()
***** Step 1.b:6.a:3.b:1.b:2: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        - Weak DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          
        Consider the set of all dependency pairs
          1: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          2: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          4: bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
          5: bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
          6: bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,4,5,6}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
****** Step 1.b:6.a:3.b:1.b:2.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        - Weak DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, 2 + 2*x + 2*xs                                      
                               = c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
        
        
        Following rules are (at-least) weakly oriented:
                               bsort#(S(x'),Cons(x,xs)) =  3 + 2*x + 2*x*x' + 2*x' + 2*x'*xs + 2*xs      
                                                        >= 2 + 2*x*x' + 2*x' + 2*x'*xs + 2*xs            
                                                        =  c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))    
        
        bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) =  2 + 2*x + 2*xs                                
                                                        >= 2 + 2*xs                                      
                                                        =  c_13(bubble#(x',xs))                          
        
         bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) =  2 + 2*x + 2*xs                                
                                                        >= 1 + 2*xs                                      
                                                        =  c_14(bubble#(x,xs))                           
        
                                        bubblesort#(xs) =  3 + 2*xs + 2*xs^2                             
                                                        >= 2 + 2*xs^2                                    
                                                        =  c_5(bsort#(len(xs),xs))                       
        
                                            +(x,S(0())) =  1 + x                                         
                                                        >= 1 + x                                         
                                                        =  S(x)                                          
        
                                            +(S(0()),y) =  1 + y                                         
                                                        >= 1 + y                                         
                                                        =  S(y)                                          
        
                                        bubble(x,Nil()) =  1 + x                                         
                                                        >= 1 + x                                         
                                                        =  Cons(x,Nil())                                 
        
                                  bubble(x',Cons(x,xs)) =  2 + x + x' + xs                               
                                                        >= 2 + x + x' + xs                               
                                                        =  bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
        
         bubble[Ite][False][Ite](False(),x',Cons(x,xs)) =  2 + x + x' + xs                               
                                                        >= 2 + x + x' + xs                               
                                                        =  Cons(x,bubble(x',xs))                         
        
          bubble[Ite][False][Ite](True(),x',Cons(x,xs)) =  2 + x + x' + xs                               
                                                        >= 2 + x + x' + xs                               
                                                        =  Cons(x',bubble(x,xs))                         
        
                                        len(Cons(x,xs)) =  1 + x + xs                                    
                                                        >= 1 + xs                                        
                                                        =  +(S(0()),len(xs))                             
        
                                             len(Nil()) =  0                                             
                                                        >= 0                                             
                                                        =  0()                                           
        
****** Step 1.b:6.a:3.b:1.b:2.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
             -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
          
          2:W:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
             -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):4
             -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):3
          
          3:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
          
          4:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):2
          
          5:W:bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: bubblesort#(xs) -> c_5(bsort#(len(xs),xs))
          1: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          2: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          4: bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
          3: bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
****** Step 1.b:6.a:3.b:1.b:2.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_5(bsort#(len(xs),xs),len#(xs))
            len#(Cons(x,xs)) -> c_6(len#(xs))
        - Weak DPs:
            bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
            bubble#(x,Nil()) -> c_3()
            bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
            bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
            bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_5(bsort#(len(xs),xs),len#(xs))
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):3
             -->_2 len#(Cons(x,xs)) -> c_6(len#(xs)):2
          
          2:S:len#(Cons(x,xs)) -> c_6(len#(xs))
             -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2
          
          3:W:bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
             -->_2 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):5
             -->_2 bubble#(x,Nil()) -> c_3():4
             -->_1 bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs)):3
          
          4:W:bubble#(x,Nil()) -> c_3()
             
          
          5:W:bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
             -->_1 bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs)):7
             -->_1 bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs)):6
          
          6:W:bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):5
             -->_1 bubble#(x,Nil()) -> c_3():4
          
          7:W:bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
             -->_1 bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs))):5
             -->_1 bubble#(x,Nil()) -> c_3():4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: bsort#(S(x'),Cons(x,xs)) -> c_2(bsort#(x',bubble(x,xs)),bubble#(x,xs))
          5: bubble#(x',Cons(x,xs)) -> c_4(bubble[Ite][False][Ite]#(<(x',x),x',Cons(x,xs)))
          7: bubble[Ite][False][Ite]#(True(),x',Cons(x,xs)) -> c_14(bubble#(x,xs))
          6: bubble[Ite][False][Ite]#(False(),x',Cons(x,xs)) -> c_13(bubble#(x',xs))
          4: bubble#(x,Nil()) -> c_3()
*** Step 1.b:6.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            bubblesort#(xs) -> c_5(bsort#(len(xs),xs),len#(xs))
            len#(Cons(x,xs)) -> c_6(len#(xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_5(bsort#(len(xs),xs),len#(xs))
             -->_2 len#(Cons(x,xs)) -> c_6(len#(xs)):2
          
          2:S:len#(Cons(x,xs)) -> c_6(len#(xs))
             -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          bubblesort#(xs) -> c_5(len#(xs))
*** Step 1.b:6.b:3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            bubblesort#(xs) -> c_5(len#(xs))
            len#(Cons(x,xs)) -> c_6(len#(xs))
        - Weak TRS:
            +(x,S(0())) -> S(x)
            +(S(0()),y) -> S(y)
            <(x,0()) -> False()
            <(0(),S(y)) -> True()
            <(S(x),S(y)) -> <(x,y)
            bubble(x,Nil()) -> Cons(x,Nil())
            bubble(x',Cons(x,xs)) -> bubble[Ite][False][Ite](<(x',x),x',Cons(x,xs))
            bubble[Ite][False][Ite](False(),x',Cons(x,xs)) -> Cons(x,bubble(x',xs))
            bubble[Ite][False][Ite](True(),x',Cons(x,xs)) -> Cons(x',bubble(x,xs))
            len(Cons(x,xs)) -> +(S(0()),len(xs))
            len(Nil()) -> 0()
        - Signature:
            {+/2, c_5(len#(xs))
          len#(Cons(x,xs)) -> c_6(len#(xs))
*** Step 1.b:6.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            bubblesort#(xs) -> c_5(len#(xs))
            len#(Cons(x,xs)) -> c_6(len#(xs))
        - Signature:
            {+/2, c_5(len#(xs))
          2: len#(Cons(x,xs)) -> c_6(len#(xs))
          
        The strictly oriented rules are moved into the weak component.
**** Step 1.b:6.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            bubblesort#(xs) -> c_5(len#(xs))
            len#(Cons(x,xs)) -> c_6(len#(xs))
        - Signature:
            {+/2, [4] xs + [5]        
                         = c_5(len#(xs))       
        
        len#(Cons(x,xs)) = [2] x + [2] xs + [4]
                         > [2] xs + [3]        
                         = c_6(len#(xs))       
        
        
        Following rules are (at-least) weakly oriented:
        
**** Step 1.b:6.b:4.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            bubblesort#(xs) -> c_5(len#(xs))
            len#(Cons(x,xs)) -> c_6(len#(xs))
        - Signature:
            {+/2, c_5(len#(xs))
            len#(Cons(x,xs)) -> c_6(len#(xs))
        - Signature:
            {+/2, c_5(len#(xs))
             -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2
          
          2:W:len#(Cons(x,xs)) -> c_6(len#(xs))
             -->_1 len#(Cons(x,xs)) -> c_6(len#(xs)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: bubblesort#(xs) -> c_5(len#(xs))
          2: len#(Cons(x,xs)) -> c_6(len#(xs))
**** Step 1.b:6.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {+/2,