* Step 1: Sum WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,0()) -> 0()
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,0()) -> 0()
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            none
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
             p(0) = [3]                  
             p(S) = [0]                  
            p(f0) = [4] x4 + [3]         
            p(f1) = [4] x4 + [1] x5 + [0]
            p(f2) = [1]                  
            p(f3) = [0]                  
            p(f4) = [0]                  
            p(f5) = [5] x3 + [0]         
            p(f6) = [4] x3 + [0]         
          
          Following rules are strictly oriented:
                f0(x1,S(x),x3,0(),x5) = [15]                    
                                      > [3]                     
                                      = 0()                     
          
              f0(x1,S(x'),x3,S(x),x5) = [3]                     
                                      > [0]                     
                                      = f1(x',S(x'),x,S(x),S(x))
          
             f2(x1,x2,S(x'),0(),S(x)) = [1]                     
                                      > [0]                     
                                      = f3(x1,x2,x',0(),x)      
          
          f2(x1,x2,S(x''),S(x'),S(x)) = [1]                     
                                      > [0]                     
                                      = f5(x1,x2,S(x''),x',x)   
          
          
          Following rules are (at-least) weakly oriented:
                  f0(x1,0(),x3,x4,x5) =  [4] x4 + [3]         
                                      >= [3]                  
                                      =  0()                  
          
                  f1(x1,x2,x3,x4,0()) =  [4] x4 + [3]         
                                      >= [3]                  
                                      =  0()                  
          
                 f1(x1,x2,x3,x4,S(x)) =  [4] x4 + [0]         
                                      >= [1]                  
                                      =  f2(x2,x1,x3,x4,x)    
          
                  f2(x1,x2,0(),x4,x5) =  [1]                  
                                      >= [3]                  
                                      =  0()                  
          
               f2(x1,x2,S(x),0(),0()) =  [1]                  
                                      >= [3]                  
                                      =  0()                  
          
             f2(x1,x2,S(x'),S(x),0()) =  [1]                  
                                      >= [3]                  
                                      =  0()                  
          
                  f3(x1,x2,x3,x4,0()) =  [0]                  
                                      >= [3]                  
                                      =  0()                  
          
                 f3(x1,x2,x3,x4,S(x)) =  [0]                  
                                      >= [0]                  
                                      =  f4(x1,x2,x4,x3,x)    
          
                  f4(0(),x2,x3,x4,x5) =  [0]                  
                                      >= [3]                  
                                      =  0()                  
          
               f4(S(x),0(),x3,x4,0()) =  [0]                  
                                      >= [3]                  
                                      =  0()                  
          
             f4(S(x'),0(),x3,x4,S(x)) =  [0]                  
                                      >= [0]                  
                                      =  f3(x',0(),x3,x4,x)   
          
             f4(S(x'),S(x),x3,x4,0()) =  [0]                  
                                      >= [3]                  
                                      =  0()                  
          
          f4(S(x''),S(x'),x3,x4,S(x)) =  [0]                  
                                      >= [1]                  
                                      =  f2(S(x''),x',x3,x4,x)
          
                  f5(x1,x2,x3,x4,0()) =  [5] x3 + [0]         
                                      >= [3]                  
                                      =  0()                  
          
                 f5(x1,x2,x3,x4,S(x)) =  [5] x3 + [0]         
                                      >= [4] x3 + [0]         
                                      =  f6(x2,x1,x3,x4,x)    
          
                  f6(x1,x2,x3,x4,0()) =  [4] x3 + [0]         
                                      >= [3]                  
                                      =  0()                  
          
                 f6(x1,x2,x3,x4,S(x)) =  [4] x3 + [0]         
                                      >= [4] x3 + [3]         
                                      =  f0(x1,x2,x4,x3,x)    
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f3(x1,x2,x3,x4,0()) -> 0()
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Weak TRS:
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            none
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
             p(0) = [0]                  
             p(S) = [1] x1 + [3]         
            p(f0) = [4] x4 + [3]         
            p(f1) = [4] x3 + [4]         
            p(f2) = [4] x3 + [2]         
            p(f3) = [4] x3 + [4] x4 + [0]
            p(f4) = [4] x3 + [4] x4 + [1]
            p(f5) = [4] x3 + [2]         
            p(f6) = [4] x3 + [0]         
          
          Following rules are strictly oriented:
               f0(x1,0(),x3,x4,x5) = [4] x4 + [3]         
                                   > [0]                  
                                   = 0()                  
          
               f1(x1,x2,x3,x4,0()) = [4] x3 + [4]         
                                   > [0]                  
                                   = 0()                  
          
              f1(x1,x2,x3,x4,S(x)) = [4] x3 + [4]         
                                   > [4] x3 + [2]         
                                   = f2(x2,x1,x3,x4,x)    
          
               f2(x1,x2,0(),x4,x5) = [2]                  
                                   > [0]                  
                                   = 0()                  
          
            f2(x1,x2,S(x),0(),0()) = [4] x + [14]         
                                   > [0]                  
                                   = 0()                  
          
          f2(x1,x2,S(x'),S(x),0()) = [4] x' + [14]        
                                   > [0]                  
                                   = 0()                  
          
               f4(0(),x2,x3,x4,x5) = [4] x3 + [4] x4 + [1]
                                   > [0]                  
                                   = 0()                  
          
            f4(S(x),0(),x3,x4,0()) = [4] x3 + [4] x4 + [1]
                                   > [0]                  
                                   = 0()                  
          
          f4(S(x'),0(),x3,x4,S(x)) = [4] x3 + [4] x4 + [1]
                                   > [4] x3 + [4] x4 + [0]
                                   = f3(x',0(),x3,x4,x)   
          
          f4(S(x'),S(x),x3,x4,0()) = [4] x3 + [4] x4 + [1]
                                   > [0]                  
                                   = 0()                  
          
               f5(x1,x2,x3,x4,0()) = [4] x3 + [2]         
                                   > [0]                  
                                   = 0()                  
          
              f5(x1,x2,x3,x4,S(x)) = [4] x3 + [2]         
                                   > [4] x3 + [0]         
                                   = f6(x2,x1,x3,x4,x)    
          
          
          Following rules are (at-least) weakly oriented:
                f0(x1,S(x),x3,0(),x5) =  [3]                     
                                      >= [0]                     
                                      =  0()                     
          
              f0(x1,S(x'),x3,S(x),x5) =  [4] x + [15]            
                                      >= [4] x + [4]             
                                      =  f1(x',S(x'),x,S(x),S(x))
          
             f2(x1,x2,S(x'),0(),S(x)) =  [4] x' + [14]           
                                      >= [4] x' + [0]            
                                      =  f3(x1,x2,x',0(),x)      
          
          f2(x1,x2,S(x''),S(x'),S(x)) =  [4] x'' + [14]          
                                      >= [4] x'' + [14]          
                                      =  f5(x1,x2,S(x''),x',x)   
          
                  f3(x1,x2,x3,x4,0()) =  [4] x3 + [4] x4 + [0]   
                                      >= [0]                     
                                      =  0()                     
          
                 f3(x1,x2,x3,x4,S(x)) =  [4] x3 + [4] x4 + [0]   
                                      >= [4] x3 + [4] x4 + [1]   
                                      =  f4(x1,x2,x4,x3,x)       
          
          f4(S(x''),S(x'),x3,x4,S(x)) =  [4] x3 + [4] x4 + [1]   
                                      >= [4] x3 + [2]            
                                      =  f2(S(x''),x',x3,x4,x)   
          
                  f6(x1,x2,x3,x4,0()) =  [4] x3 + [0]            
                                      >= [0]                     
                                      =  0()                     
          
                 f6(x1,x2,x3,x4,S(x)) =  [4] x3 + [0]            
                                      >= [4] x3 + [3]            
                                      =  f0(x1,x2,x4,x3,x)       
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f3(x1,x2,x3,x4,0()) -> 0()
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f6(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Weak TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            none
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
             p(0) = [0]         
             p(S) = [0]         
            p(f0) = [0]         
            p(f1) = [4] x2 + [0]
            p(f2) = [0]         
            p(f3) = [0]         
            p(f4) = [6]         
            p(f5) = [0]         
            p(f6) = [0]         
          
          Following rules are strictly oriented:
          f4(S(x''),S(x'),x3,x4,S(x)) = [6]                  
                                      > [0]                  
                                      = f2(S(x''),x',x3,x4,x)
          
          
          Following rules are (at-least) weakly oriented:
                  f0(x1,0(),x3,x4,x5) =  [0]                     
                                      >= [0]                     
                                      =  0()                     
          
                f0(x1,S(x),x3,0(),x5) =  [0]                     
                                      >= [0]                     
                                      =  0()                     
          
              f0(x1,S(x'),x3,S(x),x5) =  [0]                     
                                      >= [0]                     
                                      =  f1(x',S(x'),x,S(x),S(x))
          
                  f1(x1,x2,x3,x4,0()) =  [4] x2 + [0]            
                                      >= [0]                     
                                      =  0()                     
          
                 f1(x1,x2,x3,x4,S(x)) =  [4] x2 + [0]            
                                      >= [0]                     
                                      =  f2(x2,x1,x3,x4,x)       
          
                  f2(x1,x2,0(),x4,x5) =  [0]                     
                                      >= [0]                     
                                      =  0()                     
          
               f2(x1,x2,S(x),0(),0()) =  [0]                     
                                      >= [0]                     
                                      =  0()                     
          
             f2(x1,x2,S(x'),0(),S(x)) =  [0]                     
                                      >= [0]                     
                                      =  f3(x1,x2,x',0(),x)      
          
             f2(x1,x2,S(x'),S(x),0()) =  [0]                     
                                      >= [0]                     
                                      =  0()                     
          
          f2(x1,x2,S(x''),S(x'),S(x)) =  [0]                     
                                      >= [0]                     
                                      =  f5(x1,x2,S(x''),x',x)   
          
                  f3(x1,x2,x3,x4,0()) =  [0]                     
                                      >= [0]                     
                                      =  0()                     
          
                 f3(x1,x2,x3,x4,S(x)) =  [0]                     
                                      >= [6]                     
                                      =  f4(x1,x2,x4,x3,x)       
          
                  f4(0(),x2,x3,x4,x5) =  [6]                     
                                      >= [0]                     
                                      =  0()                     
          
               f4(S(x),0(),x3,x4,0()) =  [6]                     
                                      >= [0]                     
                                      =  0()                     
          
             f4(S(x'),0(),x3,x4,S(x)) =  [6]                     
                                      >= [0]                     
                                      =  f3(x',0(),x3,x4,x)      
          
             f4(S(x'),S(x),x3,x4,0()) =  [6]                     
                                      >= [0]                     
                                      =  0()                     
          
                  f5(x1,x2,x3,x4,0()) =  [0]                     
                                      >= [0]                     
                                      =  0()                     
          
                 f5(x1,x2,x3,x4,S(x)) =  [0]                     
                                      >= [0]                     
                                      =  f6(x2,x1,x3,x4,x)       
          
                  f6(x1,x2,x3,x4,0()) =  [0]                     
                                      >= [0]                     
                                      =  0()                     
          
                 f6(x1,x2,x3,x4,S(x)) =  [0]                     
                                      >= [0]                     
                                      =  f0(x1,x2,x4,x3,x)       
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 5: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f3(x1,x2,x3,x4,0()) -> 0()
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f6(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Weak TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            none
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
             p(0) = [0]                  
             p(S) = [1]                  
            p(f0) = [1] x4 + [3]         
            p(f1) = [1] x4 + [3] x5 + [0]
            p(f2) = [3]                  
            p(f3) = [2]                  
            p(f4) = [6]                  
            p(f5) = [1] x3 + [2]         
            p(f6) = [1] x3 + [0]         
          
          Following rules are strictly oriented:
          f3(x1,x2,x3,x4,0()) = [2]
                              > [0]
                              = 0()
          
          
          Following rules are (at-least) weakly oriented:
                  f0(x1,0(),x3,x4,x5) =  [1] x4 + [3]            
                                      >= [0]                     
                                      =  0()                     
          
                f0(x1,S(x),x3,0(),x5) =  [3]                     
                                      >= [0]                     
                                      =  0()                     
          
              f0(x1,S(x'),x3,S(x),x5) =  [4]                     
                                      >= [4]                     
                                      =  f1(x',S(x'),x,S(x),S(x))
          
                  f1(x1,x2,x3,x4,0()) =  [1] x4 + [0]            
                                      >= [0]                     
                                      =  0()                     
          
                 f1(x1,x2,x3,x4,S(x)) =  [1] x4 + [3]            
                                      >= [3]                     
                                      =  f2(x2,x1,x3,x4,x)       
          
                  f2(x1,x2,0(),x4,x5) =  [3]                     
                                      >= [0]                     
                                      =  0()                     
          
               f2(x1,x2,S(x),0(),0()) =  [3]                     
                                      >= [0]                     
                                      =  0()                     
          
             f2(x1,x2,S(x'),0(),S(x)) =  [3]                     
                                      >= [2]                     
                                      =  f3(x1,x2,x',0(),x)      
          
             f2(x1,x2,S(x'),S(x),0()) =  [3]                     
                                      >= [0]                     
                                      =  0()                     
          
          f2(x1,x2,S(x''),S(x'),S(x)) =  [3]                     
                                      >= [3]                     
                                      =  f5(x1,x2,S(x''),x',x)   
          
                 f3(x1,x2,x3,x4,S(x)) =  [2]                     
                                      >= [6]                     
                                      =  f4(x1,x2,x4,x3,x)       
          
                  f4(0(),x2,x3,x4,x5) =  [6]                     
                                      >= [0]                     
                                      =  0()                     
          
               f4(S(x),0(),x3,x4,0()) =  [6]                     
                                      >= [0]                     
                                      =  0()                     
          
             f4(S(x'),0(),x3,x4,S(x)) =  [6]                     
                                      >= [2]                     
                                      =  f3(x',0(),x3,x4,x)      
          
             f4(S(x'),S(x),x3,x4,0()) =  [6]                     
                                      >= [0]                     
                                      =  0()                     
          
          f4(S(x''),S(x'),x3,x4,S(x)) =  [6]                     
                                      >= [3]                     
                                      =  f2(S(x''),x',x3,x4,x)   
          
                  f5(x1,x2,x3,x4,0()) =  [1] x3 + [2]            
                                      >= [0]                     
                                      =  0()                     
          
                 f5(x1,x2,x3,x4,S(x)) =  [1] x3 + [2]            
                                      >= [1] x3 + [0]            
                                      =  f6(x2,x1,x3,x4,x)       
          
                  f6(x1,x2,x3,x4,0()) =  [1] x3 + [0]            
                                      >= [0]                     
                                      =  0()                     
          
                 f6(x1,x2,x3,x4,S(x)) =  [1] x3 + [0]            
                                      >= [1] x3 + [3]            
                                      =  f0(x1,x2,x4,x3,x)       
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 6: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f6(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Weak TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,0()) -> 0()
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            none
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
             p(0) = [0]                           
             p(S) = [1] x1 + [4]                  
            p(f0) = [1] x2 + [2] x4 + [0]         
            p(f1) = [1] x2 + [2] x3 + [3]         
            p(f2) = [1] x1 + [2] x3 + [3]         
            p(f3) = [1] x1 + [2] x3 + [2] x4 + [2]
            p(f4) = [1] x1 + [2] x3 + [2] x4 + [3]
            p(f5) = [1] x1 + [2] x3 + [2]         
            p(f6) = [1] x2 + [2] x3 + [2]         
          
          Following rules are strictly oriented:
           f6(x1,x2,x3,x4,0()) = [1] x2 + [2] x3 + [2]
                               > [0]                  
                               = 0()                  
          
          f6(x1,x2,x3,x4,S(x)) = [1] x2 + [2] x3 + [2]
                               > [1] x2 + [2] x3 + [0]
                               = f0(x1,x2,x4,x3,x)    
          
          
          Following rules are (at-least) weakly oriented:
                  f0(x1,0(),x3,x4,x5) =  [2] x4 + [0]                   
                                      >= [0]                            
                                      =  0()                            
          
                f0(x1,S(x),x3,0(),x5) =  [1] x + [4]                    
                                      >= [0]                            
                                      =  0()                            
          
              f0(x1,S(x'),x3,S(x),x5) =  [2] x + [1] x' + [12]          
                                      >= [2] x + [1] x' + [7]           
                                      =  f1(x',S(x'),x,S(x),S(x))       
          
                  f1(x1,x2,x3,x4,0()) =  [1] x2 + [2] x3 + [3]          
                                      >= [0]                            
                                      =  0()                            
          
                 f1(x1,x2,x3,x4,S(x)) =  [1] x2 + [2] x3 + [3]          
                                      >= [1] x2 + [2] x3 + [3]          
                                      =  f2(x2,x1,x3,x4,x)              
          
                  f2(x1,x2,0(),x4,x5) =  [1] x1 + [3]                   
                                      >= [0]                            
                                      =  0()                            
          
               f2(x1,x2,S(x),0(),0()) =  [2] x + [1] x1 + [11]          
                                      >= [0]                            
                                      =  0()                            
          
             f2(x1,x2,S(x'),0(),S(x)) =  [2] x' + [1] x1 + [11]         
                                      >= [2] x' + [1] x1 + [2]          
                                      =  f3(x1,x2,x',0(),x)             
          
             f2(x1,x2,S(x'),S(x),0()) =  [2] x' + [1] x1 + [11]         
                                      >= [0]                            
                                      =  0()                            
          
          f2(x1,x2,S(x''),S(x'),S(x)) =  [2] x'' + [1] x1 + [11]        
                                      >= [2] x'' + [1] x1 + [10]        
                                      =  f5(x1,x2,S(x''),x',x)          
          
                  f3(x1,x2,x3,x4,0()) =  [1] x1 + [2] x3 + [2] x4 + [2] 
                                      >= [0]                            
                                      =  0()                            
          
                 f3(x1,x2,x3,x4,S(x)) =  [1] x1 + [2] x3 + [2] x4 + [2] 
                                      >= [1] x1 + [2] x3 + [2] x4 + [3] 
                                      =  f4(x1,x2,x4,x3,x)              
          
                  f4(0(),x2,x3,x4,x5) =  [2] x3 + [2] x4 + [3]          
                                      >= [0]                            
                                      =  0()                            
          
               f4(S(x),0(),x3,x4,0()) =  [1] x + [2] x3 + [2] x4 + [7]  
                                      >= [0]                            
                                      =  0()                            
          
             f4(S(x'),0(),x3,x4,S(x)) =  [1] x' + [2] x3 + [2] x4 + [7] 
                                      >= [1] x' + [2] x3 + [2] x4 + [2] 
                                      =  f3(x',0(),x3,x4,x)             
          
             f4(S(x'),S(x),x3,x4,0()) =  [1] x' + [2] x3 + [2] x4 + [7] 
                                      >= [0]                            
                                      =  0()                            
          
          f4(S(x''),S(x'),x3,x4,S(x)) =  [1] x'' + [2] x3 + [2] x4 + [7]
                                      >= [1] x'' + [2] x3 + [7]         
                                      =  f2(S(x''),x',x3,x4,x)          
          
                  f5(x1,x2,x3,x4,0()) =  [1] x1 + [2] x3 + [2]          
                                      >= [0]                            
                                      =  0()                            
          
                 f5(x1,x2,x3,x4,S(x)) =  [1] x1 + [2] x3 + [2]          
                                      >= [1] x1 + [2] x3 + [2]          
                                      =  f6(x2,x1,x3,x4,x)              
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 7: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
        - Weak TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,0()) -> 0()
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            none
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
             p(0) = [0]                           
             p(S) = [1] x1 + [2]                  
            p(f0) = [4] x2 + [3] x4 + [1]         
            p(f1) = [4] x2 + [3] x3 + [3]         
            p(f2) = [4] x1 + [3] x3 + [2]         
            p(f3) = [4] x1 + [3] x3 + [3] x4 + [3]
            p(f4) = [4] x1 + [3] x3 + [3] x4 + [2]
            p(f5) = [4] x1 + [3] x3 + [2]         
            p(f6) = [4] x2 + [3] x3 + [1]         
          
          Following rules are strictly oriented:
          f3(x1,x2,x3,x4,S(x)) = [4] x1 + [3] x3 + [3] x4 + [3]
                               > [4] x1 + [3] x3 + [3] x4 + [2]
                               = f4(x1,x2,x4,x3,x)             
          
          
          Following rules are (at-least) weakly oriented:
                  f0(x1,0(),x3,x4,x5) =  [3] x4 + [1]                    
                                      >= [0]                             
                                      =  0()                             
          
                f0(x1,S(x),x3,0(),x5) =  [4] x + [9]                     
                                      >= [0]                             
                                      =  0()                             
          
              f0(x1,S(x'),x3,S(x),x5) =  [3] x + [4] x' + [15]           
                                      >= [3] x + [4] x' + [11]           
                                      =  f1(x',S(x'),x,S(x),S(x))        
          
                  f1(x1,x2,x3,x4,0()) =  [4] x2 + [3] x3 + [3]           
                                      >= [0]                             
                                      =  0()                             
          
                 f1(x1,x2,x3,x4,S(x)) =  [4] x2 + [3] x3 + [3]           
                                      >= [4] x2 + [3] x3 + [2]           
                                      =  f2(x2,x1,x3,x4,x)               
          
                  f2(x1,x2,0(),x4,x5) =  [4] x1 + [2]                    
                                      >= [0]                             
                                      =  0()                             
          
               f2(x1,x2,S(x),0(),0()) =  [3] x + [4] x1 + [8]            
                                      >= [0]                             
                                      =  0()                             
          
             f2(x1,x2,S(x'),0(),S(x)) =  [3] x' + [4] x1 + [8]           
                                      >= [3] x' + [4] x1 + [3]           
                                      =  f3(x1,x2,x',0(),x)              
          
             f2(x1,x2,S(x'),S(x),0()) =  [3] x' + [4] x1 + [8]           
                                      >= [0]                             
                                      =  0()                             
          
          f2(x1,x2,S(x''),S(x'),S(x)) =  [3] x'' + [4] x1 + [8]          
                                      >= [3] x'' + [4] x1 + [8]          
                                      =  f5(x1,x2,S(x''),x',x)           
          
                  f3(x1,x2,x3,x4,0()) =  [4] x1 + [3] x3 + [3] x4 + [3]  
                                      >= [0]                             
                                      =  0()                             
          
                  f4(0(),x2,x3,x4,x5) =  [3] x3 + [3] x4 + [2]           
                                      >= [0]                             
                                      =  0()                             
          
               f4(S(x),0(),x3,x4,0()) =  [4] x + [3] x3 + [3] x4 + [10]  
                                      >= [0]                             
                                      =  0()                             
          
             f4(S(x'),0(),x3,x4,S(x)) =  [4] x' + [3] x3 + [3] x4 + [10] 
                                      >= [4] x' + [3] x3 + [3] x4 + [3]  
                                      =  f3(x',0(),x3,x4,x)              
          
             f4(S(x'),S(x),x3,x4,0()) =  [4] x' + [3] x3 + [3] x4 + [10] 
                                      >= [0]                             
                                      =  0()                             
          
          f4(S(x''),S(x'),x3,x4,S(x)) =  [4] x'' + [3] x3 + [3] x4 + [10]
                                      >= [4] x'' + [3] x3 + [10]         
                                      =  f2(S(x''),x',x3,x4,x)           
          
                  f5(x1,x2,x3,x4,0()) =  [4] x1 + [3] x3 + [2]           
                                      >= [0]                             
                                      =  0()                             
          
                 f5(x1,x2,x3,x4,S(x)) =  [4] x1 + [3] x3 + [2]           
                                      >= [4] x1 + [3] x3 + [1]           
                                      =  f6(x2,x1,x3,x4,x)               
          
                  f6(x1,x2,x3,x4,0()) =  [4] x2 + [3] x3 + [1]           
                                      >= [0]                             
                                      =  0()                             
          
                 f6(x1,x2,x3,x4,S(x)) =  [4] x2 + [3] x3 + [1]           
                                      >= [4] x2 + [3] x3 + [1]           
                                      =  f0(x1,x2,x4,x3,x)               
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 8: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            f0(x1,0(),x3,x4,x5) -> 0()
            f0(x1,S(x),x3,0(),x5) -> 0()
            f0(x1,S(x'),x3,S(x),x5) -> f1(x',S(x'),x,S(x),S(x))
            f1(x1,x2,x3,x4,0()) -> 0()
            f1(x1,x2,x3,x4,S(x)) -> f2(x2,x1,x3,x4,x)
            f2(x1,x2,0(),x4,x5) -> 0()
            f2(x1,x2,S(x),0(),0()) -> 0()
            f2(x1,x2,S(x'),0(),S(x)) -> f3(x1,x2,x',0(),x)
            f2(x1,x2,S(x'),S(x),0()) -> 0()
            f2(x1,x2,S(x''),S(x'),S(x)) -> f5(x1,x2,S(x''),x',x)
            f3(x1,x2,x3,x4,0()) -> 0()
            f3(x1,x2,x3,x4,S(x)) -> f4(x1,x2,x4,x3,x)
            f4(0(),x2,x3,x4,x5) -> 0()
            f4(S(x),0(),x3,x4,0()) -> 0()
            f4(S(x'),0(),x3,x4,S(x)) -> f3(x',0(),x3,x4,x)
            f4(S(x'),S(x),x3,x4,0()) -> 0()
            f4(S(x''),S(x'),x3,x4,S(x)) -> f2(S(x''),x',x3,x4,x)
            f5(x1,x2,x3,x4,0()) -> 0()
            f5(x1,x2,x3,x4,S(x)) -> f6(x2,x1,x3,x4,x)
            f6(x1,x2,x3,x4,0()) -> 0()
            f6(x1,x2,x3,x4,S(x)) -> f0(x1,x2,x4,x3,x)
        - Signature:
            {f0/5,f1/5,f2/5,f3/5,f4/5,f5/5,f6/5} / {0/0,S/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f0,f1,f2,f3,f4,f5,f6} and constructors {0,S}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))