* Step 1: Sum WORST_CASE(Omega(n^1),O(n^3))
    + Considered Problem:
        - Strict TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            goal(xs) -> shuffle(xs)
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
            shuffle(Cons(x,xs)) -> Cons(x,shuffle(reverse(xs)))
            shuffle(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append,goal,reverse,shuffle} and constructors {Cons,Nil}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            goal(xs) -> shuffle(xs)
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
            shuffle(Cons(x,xs)) -> Cons(x,shuffle(reverse(xs)))
            shuffle(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append,goal,reverse,shuffle} and constructors {Cons,Nil}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          append(y,z){y -> Cons(x,y)} =
            append(Cons(x,y),z) ->^+ Cons(x,append(y,z))
              = C[append(y,z) = append(y,z){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            goal(xs) -> shuffle(xs)
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
            shuffle(Cons(x,xs)) -> Cons(x,shuffle(reverse(xs)))
            shuffle(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append,goal,reverse,shuffle} and constructors {Cons,Nil}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
          append#(Nil(),ys) -> c_2()
          goal#(xs) -> c_3(shuffle#(xs))
          reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
          reverse#(Nil()) -> c_5()
          shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
          shuffle#(Nil()) -> c_7()
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
            append#(Nil(),ys) -> c_2()
            goal#(xs) -> c_3(shuffle#(xs))
            reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
            reverse#(Nil()) -> c_5()
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
            shuffle#(Nil()) -> c_7()
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            goal(xs) -> shuffle(xs)
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
            shuffle(Cons(x,xs)) -> Cons(x,shuffle(reverse(xs)))
            shuffle(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
          append(Nil(),ys) -> ys
          reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
          reverse(Nil()) -> Nil()
          append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
          append#(Nil(),ys) -> c_2()
          goal#(xs) -> c_3(shuffle#(xs))
          reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
          reverse#(Nil()) -> c_5()
          shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
          shuffle#(Nil()) -> c_7()
** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
            append#(Nil(),ys) -> c_2()
            goal#(xs) -> c_3(shuffle#(xs))
            reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
            reverse#(Nil()) -> c_5()
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
            shuffle#(Nil()) -> c_7()
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,5,7}
        by application of
          Pre({2,5,7}) = {1,3,4,6}.
        Here rules are labelled as follows:
          1: append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
          2: append#(Nil(),ys) -> c_2()
          3: goal#(xs) -> c_3(shuffle#(xs))
          4: reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
          5: reverse#(Nil()) -> c_5()
          6: shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
          7: shuffle#(Nil()) -> c_7()
** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
            goal#(xs) -> c_3(shuffle#(xs))
            reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak DPs:
            append#(Nil(),ys) -> c_2()
            reverse#(Nil()) -> c_5()
            shuffle#(Nil()) -> c_7()
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
             -->_1 append#(Nil(),ys) -> c_2():5
             -->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):1
          
          2:S:goal#(xs) -> c_3(shuffle#(xs))
             -->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):4
             -->_1 shuffle#(Nil()) -> c_7():7
          
          3:S:reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
             -->_2 reverse#(Nil()) -> c_5():6
             -->_1 append#(Nil(),ys) -> c_2():5
             -->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):3
             -->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):1
          
          4:S:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
             -->_1 shuffle#(Nil()) -> c_7():7
             -->_2 reverse#(Nil()) -> c_5():6
             -->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):4
             -->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):3
          
          5:W:append#(Nil(),ys) -> c_2()
             
          
          6:W:reverse#(Nil()) -> c_5()
             
          
          7:W:shuffle#(Nil()) -> c_7()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          6: reverse#(Nil()) -> c_5()
          7: shuffle#(Nil()) -> c_7()
          5: append#(Nil(),ys) -> c_2()
** Step 1.b:5: RemoveHeads WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
            goal#(xs) -> c_3(shuffle#(xs))
            reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
           -->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):1
        
        2:S:goal#(xs) -> c_3(shuffle#(xs))
           -->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):4
        
        3:S:reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
           -->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):3
           -->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):1
        
        4:S:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
           -->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):4
           -->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):3
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(2,goal#(xs) -> c_3(shuffle#(xs)))]
** Step 1.b:6: Decompose WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
            reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
          - Weak DPs:
              reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
              shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
          - Weak TRS:
              append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
              append(Nil(),ys) -> ys
              reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
              reverse(Nil()) -> Nil()
          - Signature:
              {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
              ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
              ,Nil}
        
        Problem (S)
          - Strict DPs:
              reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
              shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
          - Weak DPs:
              append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
          - Weak TRS:
              append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
              append(Nil(),ys) -> ys
              reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
              reverse(Nil()) -> Nil()
          - Signature:
              {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
              ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
              ,Nil}
*** Step 1.b:6.a:1: DecomposeDG WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
        - Weak DPs:
            reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        and a lower component
          append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
          reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
        Further, following extension rules are added to the lower component.
          shuffle#(Cons(x,xs)) -> reverse#(xs)
          shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs))
**** Step 1.b:6.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:6.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_6) = {1}
        
        Following symbols are considered usable:
          {append,reverse,append#,goal#,reverse#,shuffle#}
        TcT has computed the following interpretation:
              p(Cons) = [1] x2 + [1]         
               p(Nil) = [0]                  
            p(append) = [1] x1 + [1] x2 + [0]
              p(goal) = [8] x1 + [1]         
           p(reverse) = [1] x1 + [0]         
           p(shuffle) = [8] x1 + [2]         
           p(append#) = [1] x1 + [1] x2 + [1]
             p(goal#) = [8] x1 + [0]         
          p(reverse#) = [1] x1 + [0]         
          p(shuffle#) = [4] x1 + [0]         
               p(c_1) = [2] x1 + [2]         
               p(c_2) = [1]                  
               p(c_3) = [4] x1 + [8]         
               p(c_4) = [2] x1 + [1] x2 + [1]
               p(c_5) = [1]                  
               p(c_6) = [1] x1 + [3]         
               p(c_7) = [0]                  
        
        Following rules are strictly oriented:
        shuffle#(Cons(x,xs)) = [4] xs + [4]                           
                             > [4] xs + [3]                           
                             = c_6(shuffle#(reverse(xs)),reverse#(xs))
        
        
        Following rules are (at-least) weakly oriented:
        append(Cons(x,xs),ys) =  [1] xs + [1] ys + [1]            
                              >= [1] xs + [1] ys + [1]            
                              =  Cons(x,append(xs,ys))            
        
             append(Nil(),ys) =  [1] ys + [0]                     
                              >= [1] ys + [0]                     
                              =  ys                               
        
          reverse(Cons(x,xs)) =  [1] xs + [1]                     
                              >= [1] xs + [1]                     
                              =  append(reverse(xs),Cons(x,Nil()))
        
               reverse(Nil()) =  [0]                              
                              >= [0]                              
                              =  Nil()                            
        
***** Step 1.b:6.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:6.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
             -->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
***** Step 1.b:6.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 1.b:6.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
        - Weak DPs:
            reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
            shuffle#(Cons(x,xs)) -> reverse#(xs)
            shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:6.a:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
        - Weak DPs:
            reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
            shuffle#(Cons(x,xs)) -> reverse#(xs)
            shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_1) = {1},
          uargs(c_4) = {1,2}
        
        Following symbols are considered usable:
          {append,reverse,append#,goal#,reverse#,shuffle#}
        TcT has computed the following interpretation:
              p(Cons) = 1 + x1 + x2            
               p(Nil) = 0                      
            p(append) = x1 + x2                
              p(goal) = 2*x1 + x1^2            
           p(reverse) = x1                     
           p(shuffle) = 0                      
           p(append#) = 2*x1 + 6*x1*x2 + 3*x2^2
             p(goal#) = 1                      
          p(reverse#) = 1 + 5*x1^2             
          p(shuffle#) = 4 + x1 + 6*x1^2        
               p(c_1) = x1                     
               p(c_2) = 0                      
               p(c_3) = x1                     
               p(c_4) = 1 + x1 + x2            
               p(c_5) = 1                      
               p(c_6) = x2                     
               p(c_7) = 0                      
        
        Following rules are strictly oriented:
        append#(Cons(x,xs),ys) = 2 + 2*x + 6*x*ys + 2*xs + 6*xs*ys + 6*ys + 3*ys^2
                               > 2*xs + 6*xs*ys + 3*ys^2                          
                               = c_1(append#(xs,ys))                              
        
        
        Following rules are (at-least) weakly oriented:
         reverse#(Cons(x,xs)) =  6 + 10*x + 10*x*xs + 5*x^2 + 10*xs + 5*xs^2         
                              >= 5 + 6*x + 6*x*xs + 3*x^2 + 8*xs + 5*xs^2            
                              =  c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
        
         shuffle#(Cons(x,xs)) =  11 + 13*x + 12*x*xs + 6*x^2 + 13*xs + 6*xs^2        
                              >= 1 + 5*xs^2                                          
                              =  reverse#(xs)                                        
        
         shuffle#(Cons(x,xs)) =  11 + 13*x + 12*x*xs + 6*x^2 + 13*xs + 6*xs^2        
                              >= 4 + xs + 6*xs^2                                     
                              =  shuffle#(reverse(xs))                               
        
        append(Cons(x,xs),ys) =  1 + x + xs + ys                                     
                              >= 1 + x + xs + ys                                     
                              =  Cons(x,append(xs,ys))                               
        
             append(Nil(),ys) =  ys                                                  
                              >= ys                                                  
                              =  ys                                                  
        
          reverse(Cons(x,xs)) =  1 + x + xs                                          
                              >= 1 + x + xs                                          
                              =  append(reverse(xs),Cons(x,Nil()))                   
        
               reverse(Nil()) =  0                                                   
                              >= 0                                                   
                              =  Nil()                                               
        
***** Step 1.b:6.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
            reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
            shuffle#(Cons(x,xs)) -> reverse#(xs)
            shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:6.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
            reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
            shuffle#(Cons(x,xs)) -> reverse#(xs)
            shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
             -->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):1
          
          2:W:reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
             -->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):2
             -->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):1
          
          3:W:shuffle#(Cons(x,xs)) -> reverse#(xs)
             -->_1 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):2
          
          4:W:shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs))
             -->_1 shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs)):4
             -->_1 shuffle#(Cons(x,xs)) -> reverse#(xs):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: shuffle#(Cons(x,xs)) -> shuffle#(reverse(xs))
          3: shuffle#(Cons(x,xs)) -> reverse#(xs)
          2: reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
          1: append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
***** Step 1.b:6.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak DPs:
            append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
             -->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):3
             -->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):1
          
          2:S:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
             -->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):2
             -->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):1
          
          3:W:append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
             -->_1 append#(Cons(x,xs),ys) -> c_1(append#(xs,ys)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: append#(Cons(x,xs),ys) -> c_1(append#(xs,ys))
*** Step 1.b:6.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/2,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs))
             -->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):1
          
          2:S:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
             -->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):2
             -->_2 reverse#(Cons(x,xs)) -> c_4(append#(reverse(xs),Cons(x,Nil())),reverse#(xs)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
*** Step 1.b:6.b:3: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
          - Weak DPs:
              shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
          - Weak TRS:
              append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
              append(Nil(),ys) -> ys
              reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
              reverse(Nil()) -> Nil()
          - Signature:
              {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
              ,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
              ,Nil}
        
        Problem (S)
          - Strict DPs:
              shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
          - Weak DPs:
              reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
          - Weak TRS:
              append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
              append(Nil(),ys) -> ys
              reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
              reverse(Nil()) -> Nil()
          - Signature:
              {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
              ,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
              ,Nil}
**** Step 1.b:6.b:3.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
        - Weak DPs:
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:6.b:3.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
        - Weak DPs:
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_4) = {1},
          uargs(c_6) = {1,2}
        
        Following symbols are considered usable:
          {append,reverse,append#,goal#,reverse#,shuffle#}
        TcT has computed the following interpretation:
              p(Cons) = 1 + x2   
               p(Nil) = 0        
            p(append) = x1 + x2  
              p(goal) = 4 + x1^2 
           p(reverse) = x1       
           p(shuffle) = 4*x1     
           p(append#) = x1 + 4*x2
             p(goal#) = 1 + 4*x1 
          p(reverse#) = x1       
          p(shuffle#) = 2*x1^2   
               p(c_1) = 1        
               p(c_2) = 0        
               p(c_3) = 1 + x1   
               p(c_4) = x1       
               p(c_5) = 1        
               p(c_6) = x1 + x2  
               p(c_7) = 1        
        
        Following rules are strictly oriented:
        reverse#(Cons(x,xs)) = 1 + xs           
                             > xs               
                             = c_4(reverse#(xs))
        
        
        Following rules are (at-least) weakly oriented:
         shuffle#(Cons(x,xs)) =  2 + 4*xs + 2*xs^2                      
                              >= xs + 2*xs^2                            
                              =  c_6(shuffle#(reverse(xs)),reverse#(xs))
        
        append(Cons(x,xs),ys) =  1 + xs + ys                            
                              >= 1 + xs + ys                            
                              =  Cons(x,append(xs,ys))                  
        
             append(Nil(),ys) =  ys                                     
                              >= ys                                     
                              =  ys                                     
        
          reverse(Cons(x,xs)) =  1 + xs                                 
                              >= 1 + xs                                 
                              =  append(reverse(xs),Cons(x,Nil()))      
        
               reverse(Nil()) =  0                                      
                              >= 0                                      
                              =  Nil()                                  
        
***** Step 1.b:6.b:3.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:6.b:3.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
             -->_1 reverse#(Cons(x,xs)) -> c_4(reverse#(xs)):1
          
          2:W:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
             -->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):2
             -->_2 reverse#(Cons(x,xs)) -> c_4(reverse#(xs)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
          1: reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
***** Step 1.b:6.b:3.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 1.b:6.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak DPs:
            reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
             -->_2 reverse#(Cons(x,xs)) -> c_4(reverse#(xs)):2
             -->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):1
          
          2:W:reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
             -->_1 reverse#(Cons(x,xs)) -> c_4(reverse#(xs)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: reverse#(Cons(x,xs)) -> c_4(reverse#(xs))
**** Step 1.b:6.b:3.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/1,c_5/0,c_6/2,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs))
             -->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)),reverse#(xs)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)))
**** Step 1.b:6.b:3.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:6.b:3.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_6) = {1}
        
        Following symbols are considered usable:
          {append,reverse,append#,goal#,reverse#,shuffle#}
        TcT has computed the following interpretation:
              p(Cons) = [1] x2 + [2]         
               p(Nil) = [0]                  
            p(append) = [1] x1 + [1] x2 + [0]
              p(goal) = [2] x1 + [2]         
           p(reverse) = [1] x1 + [0]         
           p(shuffle) = [1] x1 + [1]         
           p(append#) = [1] x2 + [0]         
             p(goal#) = [0]                  
          p(reverse#) = [1] x1 + [8]         
          p(shuffle#) = [8] x1 + [0]         
               p(c_1) = [2] x1 + [0]         
               p(c_2) = [2]                  
               p(c_3) = [0]                  
               p(c_4) = [2]                  
               p(c_5) = [1]                  
               p(c_6) = [1] x1 + [14]        
               p(c_7) = [0]                  
        
        Following rules are strictly oriented:
        shuffle#(Cons(x,xs)) = [8] xs + [16]             
                             > [8] xs + [14]             
                             = c_6(shuffle#(reverse(xs)))
        
        
        Following rules are (at-least) weakly oriented:
        append(Cons(x,xs),ys) =  [1] xs + [1] ys + [2]            
                              >= [1] xs + [1] ys + [2]            
                              =  Cons(x,append(xs,ys))            
        
             append(Nil(),ys) =  [1] ys + [0]                     
                              >= [1] ys + [0]                     
                              =  ys                               
        
          reverse(Cons(x,xs)) =  [1] xs + [2]                     
                              >= [1] xs + [2]                     
                              =  append(reverse(xs),Cons(x,Nil()))
        
               reverse(Nil()) =  [0]                              
                              >= [0]                              
                              =  Nil()                            
        
***** Step 1.b:6.b:3.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:6.b:3.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)))
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)))
             -->_1 shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: shuffle#(Cons(x,xs)) -> c_6(shuffle#(reverse(xs)))
***** Step 1.b:6.b:3.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            append(Cons(x,xs),ys) -> Cons(x,append(xs,ys))
            append(Nil(),ys) -> ys
            reverse(Cons(x,xs)) -> append(reverse(xs),Cons(x,Nil()))
            reverse(Nil()) -> Nil()
        - Signature:
            {append/2,goal/1,reverse/1,shuffle/1,append#/2,goal#/1,reverse#/1,shuffle#/1} / {Cons/2,Nil/0,c_1/1,c_2/0
            ,c_3/1,c_4/1,c_5/0,c_6/1,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {append#,goal#,reverse#,shuffle#} and constructors {Cons
            ,Nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^3))