* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest)) revapp(Nil(),rest) -> rest select(Cons(x,xs)) -> selects(x,Nil(),xs) select(Nil()) -> Nil() selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil()) selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs))) ,selects(x,Cons(x',revprefix),xs)) - Signature: {revapp/2,select/1,selects/3} / {Cons/2,Nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest)) revapp(Nil(),rest) -> rest select(Cons(x,xs)) -> selects(x,Nil(),xs) select(Nil()) -> Nil() selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil()) selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs))) ,selects(x,Cons(x',revprefix),xs)) - Signature: {revapp/2,select/1,selects/3} / {Cons/2,Nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: revapp(y,z){y -> Cons(x,y)} = revapp(Cons(x,y),z) ->^+ revapp(y,Cons(x,z)) = C[revapp(y,Cons(x,z)) = revapp(y,z){z -> Cons(x,z)}] ** Step 1.b:1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest)) revapp(Nil(),rest) -> rest select(Cons(x,xs)) -> selects(x,Nil(),xs) select(Nil()) -> Nil() selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil()) selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs))) ,selects(x,Cons(x',revprefix),xs)) - Signature: {revapp/2,select/1,selects/3} / {Cons/2,Nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(Cons) = {1,2} Following symbols are considered usable: {revapp,select,selects} TcT has computed the following interpretation: p(Cons) = 1 + x1 + x2 p(Nil) = 0 p(revapp) = x1 + x2 p(select) = 3 + 4*x1^2 p(selects) = 7 + 2*x1 + x1*x3 + 3*x1^2 + 2*x2 + x2*x3 + 3*x3 + 3*x3^2 Following rules are strictly oriented: select(Nil()) = 3 > 0 = Nil() selects(x,revprefix,Nil()) = 7 + 2*revprefix + 2*x + 3*x^2 > 2 + revprefix + x = Cons(Cons(x,revapp(revprefix,Nil())),Nil()) selects(x',revprefix,Cons(x,xs)) = 13 + 3*revprefix + revprefix*x + revprefix*xs + 9*x + x*x' + 6*x*xs + 3*x^2 + 3*x' + x'*xs + 3*x'^2 + 9*xs + 3*xs^2 > 12 + 3*revprefix + revprefix*xs + 3*x + x*xs + 3*x^2 + 3*x' + x'*xs + 5*xs + 3*xs^2 = Cons(Cons(x',revapp(revprefix,Cons(x,xs))),selects(x,Cons(x',revprefix),xs)) Following rules are (at-least) weakly oriented: revapp(Cons(x,xs),rest) = 1 + rest + x + xs >= 1 + rest + x + xs = revapp(xs,Cons(x,rest)) revapp(Nil(),rest) = rest >= rest = rest select(Cons(x,xs)) = 7 + 8*x + 8*x*xs + 4*x^2 + 8*xs + 4*xs^2 >= 7 + 2*x + x*xs + 3*x^2 + 3*xs + 3*xs^2 = selects(x,Nil(),xs) ** Step 1.b:2: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest)) revapp(Nil(),rest) -> rest select(Cons(x,xs)) -> selects(x,Nil(),xs) - Weak TRS: select(Nil()) -> Nil() selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil()) selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs))) ,selects(x,Cons(x',revprefix),xs)) - Signature: {revapp/2,select/1,selects/3} / {Cons/2,Nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(Cons) = {1,2} Following symbols are considered usable: {revapp,select,selects} TcT has computed the following interpretation: p(Cons) = 1 + x1 + x2 p(Nil) = 0 p(revapp) = x1 + x2 p(select) = 2 + 5*x1 + x1^2 p(selects) = 2 + 3*x1 + x1*x2 + 2*x1*x3 + 3*x2 + x2*x3 + 6*x3 + x3^2 Following rules are strictly oriented: select(Cons(x,xs)) = 8 + 7*x + 2*x*xs + x^2 + 7*xs + xs^2 > 2 + 3*x + 2*x*xs + 6*xs + xs^2 = selects(x,Nil(),xs) Following rules are (at-least) weakly oriented: revapp(Cons(x,xs),rest) = 1 + rest + x + xs >= 1 + rest + x + xs = revapp(xs,Cons(x,rest)) revapp(Nil(),rest) = rest >= rest = rest select(Nil()) = 2 >= 0 = Nil() selects(x,revprefix,Nil()) = 2 + 3*revprefix + revprefix*x + 3*x >= 2 + revprefix + x = Cons(Cons(x,revapp(revprefix,Nil())),Nil()) selects(x',revprefix,Cons(x,xs)) = 9 + 4*revprefix + revprefix*x + revprefix*x' + revprefix*xs + 8*x + 2*x*x' + 2*x*xs + x^2 + 5*x' + 2*x'*xs + 8*xs + xs^2 >= 8 + 4*revprefix + revprefix*x + revprefix*xs + 5*x + x*x' + 2*x*xs + 4*x' + x'*xs + 8*xs + xs^2 = Cons(Cons(x',revapp(revprefix,Cons(x,xs))),selects(x,Cons(x',revprefix),xs)) ** Step 1.b:3: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest)) revapp(Nil(),rest) -> rest - Weak TRS: select(Cons(x,xs)) -> selects(x,Nil(),xs) select(Nil()) -> Nil() selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil()) selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs))) ,selects(x,Cons(x',revprefix),xs)) - Signature: {revapp/2,select/1,selects/3} / {Cons/2,Nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(Cons) = {1,2} Following symbols are considered usable: {revapp,select,selects} TcT has computed the following interpretation: p(Cons) = 1 + x1 + x2 p(Nil) = 1 p(revapp) = x1 + x2 p(select) = 4*x1 + 5*x1^2 p(selects) = 2 + 7*x1 + 5*x1*x2 + 6*x1*x3 + 5*x1^2 + 5*x2*x3 + 2*x2^2 + 3*x3 + 5*x3^2 Following rules are strictly oriented: revapp(Nil(),rest) = 1 + rest > rest = rest Following rules are (at-least) weakly oriented: revapp(Cons(x,xs),rest) = 1 + rest + x + xs >= 1 + rest + x + xs = revapp(xs,Cons(x,rest)) select(Cons(x,xs)) = 9 + 14*x + 10*x*xs + 5*x^2 + 14*xs + 5*xs^2 >= 4 + 12*x + 6*x*xs + 5*x^2 + 8*xs + 5*xs^2 = selects(x,Nil(),xs) select(Nil()) = 9 >= 1 = Nil() selects(x,revprefix,Nil()) = 10 + 5*revprefix + 5*revprefix*x + 2*revprefix^2 + 13*x + 5*x^2 >= 4 + revprefix + x = Cons(Cons(x,revapp(revprefix,Nil())),Nil()) selects(x',revprefix,Cons(x,xs)) = 10 + 5*revprefix + 5*revprefix*x + 5*revprefix*x' + 5*revprefix*xs + 2*revprefix^2 + 13*x + 6*x*x' + 10*x*xs + 5*x^2 + 13*x' + 6*x'*xs + 5*x'^2 + 13*xs + 5*xs^2 >= 7 + 5*revprefix + 5*revprefix*x + 4*revprefix*x' + 5*revprefix*xs + 2*revprefix^2 + 13*x + 5*x*x' + 6*x*xs + 5*x^2 + 5*x' + 5*x'*xs + 2*x'^2 + 9*xs + 5*xs^2 = Cons(Cons(x',revapp(revprefix,Cons(x,xs))),selects(x,Cons(x',revprefix),xs)) ** Step 1.b:4: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest)) - Weak TRS: revapp(Nil(),rest) -> rest select(Cons(x,xs)) -> selects(x,Nil(),xs) select(Nil()) -> Nil() selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil()) selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs))) ,selects(x,Cons(x',revprefix),xs)) - Signature: {revapp/2,select/1,selects/3} / {Cons/2,Nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(Cons) = {1,2} Following symbols are considered usable: {revapp,select,selects} TcT has computed the following interpretation: p(Cons) = 1 + x1 + x2 p(Nil) = 1 p(revapp) = 3*x1 + 2*x2 p(select) = 7*x1 + 4*x1^2 p(selects) = 7 + 7*x1*x3 + x1^2 + 4*x2*x3 + x3 + 4*x3^2 Following rules are strictly oriented: revapp(Cons(x,xs),rest) = 3 + 2*rest + 3*x + 3*xs > 2 + 2*rest + 2*x + 3*xs = revapp(xs,Cons(x,rest)) Following rules are (at-least) weakly oriented: revapp(Nil(),rest) = 3 + 2*rest >= rest = rest select(Cons(x,xs)) = 11 + 15*x + 8*x*xs + 4*x^2 + 15*xs + 4*xs^2 >= 7 + 7*x*xs + x^2 + 5*xs + 4*xs^2 = selects(x,Nil(),xs) select(Nil()) = 11 >= 1 = Nil() selects(x,revprefix,Nil()) = 12 + 4*revprefix + 7*x + x^2 >= 5 + 3*revprefix + x = Cons(Cons(x,revapp(revprefix,Nil())),Nil()) selects(x',revprefix,Cons(x,xs)) = 12 + 4*revprefix + 4*revprefix*x + 4*revprefix*xs + 9*x + 7*x*x' + 8*x*xs + 4*x^2 + 7*x' + 7*x'*xs + x'^2 + 9*xs + 4*xs^2 >= 11 + 3*revprefix + 4*revprefix*xs + 2*x + 7*x*xs + x^2 + x' + 4*x'*xs + 7*xs + 4*xs^2 = Cons(Cons(x',revapp(revprefix,Cons(x,xs))),selects(x,Cons(x',revprefix),xs)) ** Step 1.b:5: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest)) revapp(Nil(),rest) -> rest select(Cons(x,xs)) -> selects(x,Nil(),xs) select(Nil()) -> Nil() selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil()) selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs))) ,selects(x,Cons(x',revprefix),xs)) - Signature: {revapp/2,select/1,selects/3} / {Cons/2,Nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))