* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
            revapp(Nil(),rest) -> rest
            select(Cons(x,xs)) -> selects(x,Nil(),xs)
            select(Nil()) -> Nil()
            selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil())
            selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                    ,selects(x,Cons(x',revprefix),xs))
        - Signature:
            {revapp/2,select/1,selects/3} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
            revapp(Nil(),rest) -> rest
            select(Cons(x,xs)) -> selects(x,Nil(),xs)
            select(Nil()) -> Nil()
            selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil())
            selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                    ,selects(x,Cons(x',revprefix),xs))
        - Signature:
            {revapp/2,select/1,selects/3} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          revapp(y,z){y -> Cons(x,y)} =
            revapp(Cons(x,y),z) ->^+ revapp(y,Cons(x,z))
              = C[revapp(y,Cons(x,z)) = revapp(y,z){z -> Cons(x,z)}]

** Step 1.b:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
            revapp(Nil(),rest) -> rest
            select(Cons(x,xs)) -> selects(x,Nil(),xs)
            select(Nil()) -> Nil()
            selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil())
            selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                    ,selects(x,Cons(x',revprefix),xs))
        - Signature:
            {revapp/2,select/1,selects/3} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(Cons) = {1,2}
        
        Following symbols are considered usable:
          {revapp,select,selects}
        TcT has computed the following interpretation:
             p(Cons) = 1 + x1 + x2                                             
              p(Nil) = 0                                                       
           p(revapp) = x1 + x2                                                 
           p(select) = 3 + 4*x1^2                                              
          p(selects) = 7 + 2*x1 + x1*x3 + 3*x1^2 + 2*x2 + x2*x3 + 3*x3 + 3*x3^2
        
        Following rules are strictly oriented:
                           select(Nil()) = 3                                                                                                                  
                                         > 0                                                                                                                  
                                         = Nil()                                                                                                              
        
              selects(x,revprefix,Nil()) = 7 + 2*revprefix + 2*x + 3*x^2                                                                                      
                                         > 2 + revprefix + x                                                                                                  
                                         = Cons(Cons(x,revapp(revprefix,Nil())),Nil())                                                                        
        
        selects(x',revprefix,Cons(x,xs)) = 13 + 3*revprefix + revprefix*x + revprefix*xs + 9*x + x*x' + 6*x*xs + 3*x^2 + 3*x' + x'*xs + 3*x'^2 + 9*xs + 3*xs^2
                                         > 12 + 3*revprefix + revprefix*xs + 3*x + x*xs + 3*x^2 + 3*x' + x'*xs + 5*xs + 3*xs^2                                
                                         = Cons(Cons(x',revapp(revprefix,Cons(x,xs))),selects(x,Cons(x',revprefix),xs))                                       
        
        
        Following rules are (at-least) weakly oriented:
        revapp(Cons(x,xs),rest) =  1 + rest + x + xs                       
                                >= 1 + rest + x + xs                       
                                =  revapp(xs,Cons(x,rest))                 
        
             revapp(Nil(),rest) =  rest                                    
                                >= rest                                    
                                =  rest                                    
        
             select(Cons(x,xs)) =  7 + 8*x + 8*x*xs + 4*x^2 + 8*xs + 4*xs^2
                                >= 7 + 2*x + x*xs + 3*x^2 + 3*xs + 3*xs^2  
                                =  selects(x,Nil(),xs)                     
        
** Step 1.b:2: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
            revapp(Nil(),rest) -> rest
            select(Cons(x,xs)) -> selects(x,Nil(),xs)
        - Weak TRS:
            select(Nil()) -> Nil()
            selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil())
            selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                    ,selects(x,Cons(x',revprefix),xs))
        - Signature:
            {revapp/2,select/1,selects/3} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(Cons) = {1,2}
        
        Following symbols are considered usable:
          {revapp,select,selects}
        TcT has computed the following interpretation:
             p(Cons) = 1 + x1 + x2                                            
              p(Nil) = 0                                                      
           p(revapp) = x1 + x2                                                
           p(select) = 2 + 5*x1 + x1^2                                        
          p(selects) = 2 + 3*x1 + x1*x2 + 2*x1*x3 + 3*x2 + x2*x3 + 6*x3 + x3^2
        
        Following rules are strictly oriented:
        select(Cons(x,xs)) = 8 + 7*x + 2*x*xs + x^2 + 7*xs + xs^2
                           > 2 + 3*x + 2*x*xs + 6*xs + xs^2      
                           = selects(x,Nil(),xs)                 
        
        
        Following rules are (at-least) weakly oriented:
                 revapp(Cons(x,xs),rest) =  1 + rest + x + xs                                                                                                       
                                         >= 1 + rest + x + xs                                                                                                       
                                         =  revapp(xs,Cons(x,rest))                                                                                                 
        
                      revapp(Nil(),rest) =  rest                                                                                                                    
                                         >= rest                                                                                                                    
                                         =  rest                                                                                                                    
        
                           select(Nil()) =  2                                                                                                                       
                                         >= 0                                                                                                                       
                                         =  Nil()                                                                                                                   
        
              selects(x,revprefix,Nil()) =  2 + 3*revprefix + revprefix*x + 3*x                                                                                     
                                         >= 2 + revprefix + x                                                                                                       
                                         =  Cons(Cons(x,revapp(revprefix,Nil())),Nil())                                                                             
        
        selects(x',revprefix,Cons(x,xs)) =  9 + 4*revprefix + revprefix*x + revprefix*x' + revprefix*xs + 8*x + 2*x*x' + 2*x*xs + x^2 + 5*x' + 2*x'*xs + 8*xs + xs^2
                                         >= 8 + 4*revprefix + revprefix*x + revprefix*xs + 5*x + x*x' + 2*x*xs + 4*x' + x'*xs + 8*xs + xs^2                         
                                         =  Cons(Cons(x',revapp(revprefix,Cons(x,xs))),selects(x,Cons(x',revprefix),xs))                                            
        
** Step 1.b:3: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
            revapp(Nil(),rest) -> rest
        - Weak TRS:
            select(Cons(x,xs)) -> selects(x,Nil(),xs)
            select(Nil()) -> Nil()
            selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil())
            selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                    ,selects(x,Cons(x',revprefix),xs))
        - Signature:
            {revapp/2,select/1,selects/3} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(Cons) = {1,2}
        
        Following symbols are considered usable:
          {revapp,select,selects}
        TcT has computed the following interpretation:
             p(Cons) = 1 + x1 + x2                                                             
              p(Nil) = 1                                                                       
           p(revapp) = x1 + x2                                                                 
           p(select) = 4*x1 + 5*x1^2                                                           
          p(selects) = 2 + 7*x1 + 5*x1*x2 + 6*x1*x3 + 5*x1^2 + 5*x2*x3 + 2*x2^2 + 3*x3 + 5*x3^2
        
        Following rules are strictly oriented:
        revapp(Nil(),rest) = 1 + rest
                           > rest    
                           = rest    
        
        
        Following rules are (at-least) weakly oriented:
                 revapp(Cons(x,xs),rest) =  1 + rest + x + xs                                                                                                                                               
                                         >= 1 + rest + x + xs                                                                                                                                               
                                         =  revapp(xs,Cons(x,rest))                                                                                                                                         
        
                      select(Cons(x,xs)) =  9 + 14*x + 10*x*xs + 5*x^2 + 14*xs + 5*xs^2                                                                                                                     
                                         >= 4 + 12*x + 6*x*xs + 5*x^2 + 8*xs + 5*xs^2                                                                                                                       
                                         =  selects(x,Nil(),xs)                                                                                                                                             
        
                           select(Nil()) =  9                                                                                                                                                               
                                         >= 1                                                                                                                                                               
                                         =  Nil()                                                                                                                                                           
        
              selects(x,revprefix,Nil()) =  10 + 5*revprefix + 5*revprefix*x + 2*revprefix^2 + 13*x + 5*x^2                                                                                                 
                                         >= 4 + revprefix + x                                                                                                                                               
                                         =  Cons(Cons(x,revapp(revprefix,Nil())),Nil())                                                                                                                     
        
        selects(x',revprefix,Cons(x,xs)) =  10 + 5*revprefix + 5*revprefix*x + 5*revprefix*x' + 5*revprefix*xs + 2*revprefix^2 + 13*x + 6*x*x' + 10*x*xs + 5*x^2 + 13*x' + 6*x'*xs + 5*x'^2 + 13*xs + 5*xs^2
                                         >= 7 + 5*revprefix + 5*revprefix*x + 4*revprefix*x' + 5*revprefix*xs + 2*revprefix^2 + 13*x + 5*x*x' + 6*x*xs + 5*x^2 + 5*x' + 5*x'*xs + 2*x'^2 + 9*xs + 5*xs^2    
                                         =  Cons(Cons(x',revapp(revprefix,Cons(x,xs))),selects(x,Cons(x',revprefix),xs))                                                                                    
        
** Step 1.b:4: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
        - Weak TRS:
            revapp(Nil(),rest) -> rest
            select(Cons(x,xs)) -> selects(x,Nil(),xs)
            select(Nil()) -> Nil()
            selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil())
            selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                    ,selects(x,Cons(x',revprefix),xs))
        - Signature:
            {revapp/2,select/1,selects/3} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(Cons) = {1,2}
        
        Following symbols are considered usable:
          {revapp,select,selects}
        TcT has computed the following interpretation:
             p(Cons) = 1 + x1 + x2                               
              p(Nil) = 1                                         
           p(revapp) = 3*x1 + 2*x2                               
           p(select) = 7*x1 + 4*x1^2                             
          p(selects) = 7 + 7*x1*x3 + x1^2 + 4*x2*x3 + x3 + 4*x3^2
        
        Following rules are strictly oriented:
        revapp(Cons(x,xs),rest) = 3 + 2*rest + 3*x + 3*xs
                                > 2 + 2*rest + 2*x + 3*xs
                                = revapp(xs,Cons(x,rest))
        
        
        Following rules are (at-least) weakly oriented:
                      revapp(Nil(),rest) =  3 + 2*rest                                                                                                               
                                         >= rest                                                                                                                     
                                         =  rest                                                                                                                     
        
                      select(Cons(x,xs)) =  11 + 15*x + 8*x*xs + 4*x^2 + 15*xs + 4*xs^2                                                                              
                                         >= 7 + 7*x*xs + x^2 + 5*xs + 4*xs^2                                                                                         
                                         =  selects(x,Nil(),xs)                                                                                                      
        
                           select(Nil()) =  11                                                                                                                       
                                         >= 1                                                                                                                        
                                         =  Nil()                                                                                                                    
        
              selects(x,revprefix,Nil()) =  12 + 4*revprefix + 7*x + x^2                                                                                             
                                         >= 5 + 3*revprefix + x                                                                                                      
                                         =  Cons(Cons(x,revapp(revprefix,Nil())),Nil())                                                                              
        
        selects(x',revprefix,Cons(x,xs)) =  12 + 4*revprefix + 4*revprefix*x + 4*revprefix*xs + 9*x + 7*x*x' + 8*x*xs + 4*x^2 + 7*x' + 7*x'*xs + x'^2 + 9*xs + 4*xs^2
                                         >= 11 + 3*revprefix + 4*revprefix*xs + 2*x + 7*x*xs + x^2 + x' + 4*x'*xs + 7*xs + 4*xs^2                                    
                                         =  Cons(Cons(x',revapp(revprefix,Cons(x,xs))),selects(x,Cons(x',revprefix),xs))                                             
        
** Step 1.b:5: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
            revapp(Nil(),rest) -> rest
            select(Cons(x,xs)) -> selects(x,Nil(),xs)
            select(Nil()) -> Nil()
            selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil())
            selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                    ,selects(x,Cons(x',revprefix),xs))
        - Signature:
            {revapp/2,select/1,selects/3} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))