* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys goal(xs) -> quicksort(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() part(x,Nil(),xs1,xs2) -> app(quicksort(xs1),quicksort(xs2)) part(x',Cons(x,xs),xs1,xs2) -> part[Ite][True][Ite](>(x',x),x',Cons(x,xs),xs1,xs2) quicksort(Cons(x,Cons(x',xs))) -> part(x,Cons(x,Cons(x',xs)),Cons(x,Nil()),Nil()) quicksort(Cons(x,Nil())) -> Cons(x,Nil()) quicksort(Nil()) -> Nil() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) >(0(),y) -> False() >(S(x),0()) -> True() >(S(x),S(y)) -> >(x,y) part[Ite][True][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[Ite][True][Ite][False][Ite](<(x',x) ,x' ,Cons(x,xs) ,xs1 ,xs2) part[Ite][True][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2) - Signature: {2,>/2,app/2,goal/1,notEmpty/1,part/4,part[Ite][True][Ite]/5,quicksort/1} / {0/0,Cons/2,False/0,Nil/0,S/1 ,True/0,part[Ite][True][Ite][False][Ite]/5} - Obligation: innermost runtime complexity wrt. defined symbols {<,>,app,goal,notEmpty,part,part[Ite][True][Ite] ,quicksort} and constructors {0,Cons,False,Nil,S,True,part[Ite][True][Ite][False][Ite]} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys goal(xs) -> quicksort(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() part(x,Nil(),xs1,xs2) -> app(quicksort(xs1),quicksort(xs2)) part(x',Cons(x,xs),xs1,xs2) -> part[Ite][True][Ite](>(x',x),x',Cons(x,xs),xs1,xs2) quicksort(Cons(x,Cons(x',xs))) -> part(x,Cons(x,Cons(x',xs)),Cons(x,Nil()),Nil()) quicksort(Cons(x,Nil())) -> Cons(x,Nil()) quicksort(Nil()) -> Nil() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) >(0(),y) -> False() >(S(x),0()) -> True() >(S(x),S(y)) -> >(x,y) part[Ite][True][Ite](False(),x',Cons(x,xs),xs1,xs2) -> part[Ite][True][Ite][False][Ite](<(x',x) ,x' ,Cons(x,xs) ,xs1 ,xs2) part[Ite][True][Ite](True(),x',Cons(x,xs),xs1,xs2) -> part(x',xs,Cons(x,xs1),xs2) - Signature: {2,>/2,app/2,goal/1,notEmpty/1,part/4,part[Ite][True][Ite]/5,quicksort/1} / {0/0,Cons/2,False/0,Nil/0,S/1 ,True/0,part[Ite][True][Ite][False][Ite]/5} - Obligation: innermost runtime complexity wrt. defined symbols {<,>,app,goal,notEmpty,part,part[Ite][True][Ite] ,quicksort} and constructors {0,Cons,False,Nil,S,True,part[Ite][True][Ite][False][Ite]} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: app(y,z){y -> Cons(x,y)} = app(Cons(x,y),z) ->^+ Cons(x,app(y,z)) = C[app(y,z) = app(y,z){}] WORST_CASE(Omega(n^1),?)