* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            add0(x,Nil()) -> x
            add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs))
            goal(x,y) -> power(x,y)
            mult(x,Nil()) -> Nil()
            mult(x',Cons(x,xs)) -> add0(x',mult(x',xs))
            power(x,Nil()) -> Cons(Nil(),Nil())
            power(x',Cons(x,xs)) -> mult(x',power(x',xs))
        - Signature:
            {add0/2,goal/2,mult/2,power/2} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0,goal,mult,power} and constructors {Cons,Nil}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            add0(x,Nil()) -> x
            add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs))
            goal(x,y) -> power(x,y)
            mult(x,Nil()) -> Nil()
            mult(x',Cons(x,xs)) -> add0(x',mult(x',xs))
            power(x,Nil()) -> Cons(Nil(),Nil())
            power(x',Cons(x,xs)) -> mult(x',power(x',xs))
        - Signature:
            {add0/2,goal/2,mult/2,power/2} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0,goal,mult,power} and constructors {Cons,Nil}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          add0(x,z){z -> Cons(y,z)} =
            add0(x,Cons(y,z)) ->^+ Cons(Cons(Nil(),Nil()),add0(x,z))
              = C[add0(x,z) = add0(x,z){}]

WORST_CASE(Omega(n^1),?)