* Step 1: Sum WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: goal(xs) -> ordered(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered(Cons(x,Nil())) -> True() ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) -> True() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x,xs)) -> ordered(xs) - Signature: {2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: goal(xs) -> ordered(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered(Cons(x,Nil())) -> True() ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) -> True() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x,xs)) -> ordered(xs) - Signature: {2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(ordered[Ite]) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(<) = [0] p(Cons) = [1] x2 + [4] p(False) = [0] p(Nil) = [0] p(S) = [1] x1 + [0] p(True) = [0] p(goal) = [2] x1 + [0] p(notEmpty) = [0] p(ordered) = [2] x1 + [0] p(ordered[Ite]) = [1] x1 + [2] x2 + [0] Following rules are strictly oriented: ordered(Cons(x,Nil())) = [8] > [0] = True() Following rules are (at-least) weakly oriented: <(x,0()) = [0] >= [0] = False() <(0(),S(y)) = [0] >= [0] = True() <(S(x),S(y)) = [0] >= [0] = <(x,y) goal(xs) = [2] xs + [0] >= [2] xs + [0] = ordered(xs) notEmpty(Cons(x,xs)) = [0] >= [0] = True() notEmpty(Nil()) = [0] >= [0] = False() ordered(Cons(x',Cons(x,xs))) = [2] xs + [16] >= [2] xs + [16] = ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) = [0] >= [0] = True() ordered[Ite](False(),xs) = [2] xs + [0] >= [0] = False() ordered[Ite](True(),Cons(x,xs)) = [2] xs + [8] >= [2] xs + [0] = ordered(xs) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: goal(xs) -> ordered(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) -> True() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) ordered(Cons(x,Nil())) -> True() ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x,xs)) -> ordered(xs) - Signature: {2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(ordered[Ite]) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(<) = [11] p(Cons) = [1] x1 + [1] x2 + [0] p(False) = [0] p(Nil) = [3] p(S) = [0] p(True) = [5] p(goal) = [2] x1 + [9] p(notEmpty) = [8] x1 + [4] p(ordered) = [2] x1 + [3] p(ordered[Ite]) = [1] x1 + [2] x2 + [1] Following rules are strictly oriented: goal(xs) = [2] xs + [9] > [2] xs + [3] = ordered(xs) notEmpty(Nil()) = [28] > [0] = False() ordered(Nil()) = [9] > [5] = True() Following rules are (at-least) weakly oriented: <(x,0()) = [11] >= [0] = False() <(0(),S(y)) = [11] >= [5] = True() <(S(x),S(y)) = [11] >= [11] = <(x,y) notEmpty(Cons(x,xs)) = [8] x + [8] xs + [4] >= [5] = True() ordered(Cons(x,Nil())) = [2] x + [9] >= [5] = True() ordered(Cons(x',Cons(x,xs))) = [2] x + [2] x' + [2] xs + [3] >= [2] x + [2] x' + [2] xs + [12] = ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered[Ite](False(),xs) = [2] xs + [1] >= [0] = False() ordered[Ite](True(),Cons(x,xs)) = [2] x + [2] xs + [6] >= [2] xs + [3] = ordered(xs) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 4: MI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: notEmpty(Cons(x,xs)) -> True() ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) goal(xs) -> ordered(xs) notEmpty(Nil()) -> False() ordered(Cons(x,Nil())) -> True() ordered(Nil()) -> True() ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x,xs)) -> ordered(xs) - Signature: {2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(ordered[Ite]) = {1} Following symbols are considered usable: {<,goal,notEmpty,ordered,ordered[Ite]} TcT has computed the following interpretation: p(0) = [1] p(<) = [4] p(Cons) = [0] p(False) = [2] p(Nil) = [0] p(S) = [1] p(True) = [4] p(goal) = [8] x_1 + [8] p(notEmpty) = [1] x_1 + [10] p(ordered) = [8] p(ordered[Ite]) = [2] x_1 + [0] Following rules are strictly oriented: notEmpty(Cons(x,xs)) = [10] > [4] = True() Following rules are (at-least) weakly oriented: <(x,0()) = [4] >= [2] = False() <(0(),S(y)) = [4] >= [4] = True() <(S(x),S(y)) = [4] >= [4] = <(x,y) goal(xs) = [8] xs + [8] >= [8] = ordered(xs) notEmpty(Nil()) = [10] >= [2] = False() ordered(Cons(x,Nil())) = [8] >= [4] = True() ordered(Cons(x',Cons(x,xs))) = [8] >= [8] = ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) = [8] >= [4] = True() ordered[Ite](False(),xs) = [4] >= [2] = False() ordered[Ite](True(),Cons(x,xs)) = [8] >= [8] = ordered(xs) * Step 5: MI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) goal(xs) -> ordered(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered(Cons(x,Nil())) -> True() ordered(Nil()) -> True() ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x,xs)) -> ordered(xs) - Signature: {2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(ordered[Ite]) = {1} Following symbols are considered usable: {<,goal,notEmpty,ordered,ordered[Ite]} TcT has computed the following interpretation: p(0) = [0] p(<) = [1] p(Cons) = [1] x_2 + [1] p(False) = [0] p(Nil) = [1] p(S) = [0] p(True) = [0] p(goal) = [12] x_1 + [15] p(notEmpty) = [10] x_1 + [2] p(ordered) = [8] x_1 + [15] p(ordered[Ite]) = [1] x_1 + [8] x_2 + [7] Following rules are strictly oriented: ordered(Cons(x',Cons(x,xs))) = [8] xs + [31] > [8] xs + [24] = ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) Following rules are (at-least) weakly oriented: <(x,0()) = [1] >= [0] = False() <(0(),S(y)) = [1] >= [0] = True() <(S(x),S(y)) = [1] >= [1] = <(x,y) goal(xs) = [12] xs + [15] >= [8] xs + [15] = ordered(xs) notEmpty(Cons(x,xs)) = [10] xs + [12] >= [0] = True() notEmpty(Nil()) = [12] >= [0] = False() ordered(Cons(x,Nil())) = [31] >= [0] = True() ordered(Nil()) = [23] >= [0] = True() ordered[Ite](False(),xs) = [8] xs + [7] >= [0] = False() ordered[Ite](True(),Cons(x,xs)) = [8] xs + [15] >= [8] xs + [15] = ordered(xs) * Step 6: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) goal(xs) -> ordered(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered(Cons(x,Nil())) -> True() ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) -> True() ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x,xs)) -> ordered(xs) - Signature: {2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))