* Step 1: Sum WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: goal(xs) -> ordered(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered(Cons(x,Nil())) -> True() ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) -> True() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs) - Signature: {2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: goal(xs) -> ordered(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered(Cons(x,Nil())) -> True() ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) -> True() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs) - Signature: {2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(ordered[Ite]) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [2] p(<) = [8] p(Cons) = [0] p(False) = [0] p(Nil) = [3] p(S) = [1] x1 + [8] p(True) = [3] p(goal) = [1] x1 + [0] p(notEmpty) = [5] x1 + [6] p(ordered) = [1] p(ordered[Ite]) = [1] x1 + [4] Following rules are strictly oriented: notEmpty(Cons(x,xs)) = [6] > [3] = True() notEmpty(Nil()) = [21] > [0] = False() Following rules are (at-least) weakly oriented: <(x,0()) = [8] >= [0] = False() <(0(),S(y)) = [8] >= [3] = True() <(S(x),S(y)) = [8] >= [8] = <(x,y) goal(xs) = [1] xs + [0] >= [1] = ordered(xs) ordered(Cons(x,Nil())) = [1] >= [3] = True() ordered(Cons(x',Cons(x,xs))) = [1] >= [12] = ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) = [1] >= [3] = True() ordered[Ite](False(),xs) = [4] >= [0] = False() ordered[Ite](True(),Cons(x',Cons(x,xs))) = [7] >= [1] = ordered(xs) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 3: MI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: goal(xs) -> ordered(xs) ordered(Cons(x,Nil())) -> True() ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) -> True() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs) - Signature: {2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(ordered[Ite]) = {1} Following symbols are considered usable: {<,goal,notEmpty,ordered,ordered[Ite]} TcT has computed the following interpretation: p(0) = [0] p(<) = [0] p(Cons) = [0] p(False) = [0] p(Nil) = [0] p(S) = [0] p(True) = [0] p(goal) = [8] p(notEmpty) = [0] p(ordered) = [0] p(ordered[Ite]) = [2] x_1 + [0] Following rules are strictly oriented: goal(xs) = [8] > [0] = ordered(xs) Following rules are (at-least) weakly oriented: <(x,0()) = [0] >= [0] = False() <(0(),S(y)) = [0] >= [0] = True() <(S(x),S(y)) = [0] >= [0] = <(x,y) notEmpty(Cons(x,xs)) = [0] >= [0] = True() notEmpty(Nil()) = [0] >= [0] = False() ordered(Cons(x,Nil())) = [0] >= [0] = True() ordered(Cons(x',Cons(x,xs))) = [0] >= [0] = ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) = [0] >= [0] = True() ordered[Ite](False(),xs) = [0] >= [0] = False() ordered[Ite](True(),Cons(x',Cons(x,xs))) = [0] >= [0] = ordered(xs) * Step 4: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: ordered(Cons(x,Nil())) -> True() ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) -> True() - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) goal(xs) -> ordered(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs) - Signature: {2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(ordered[Ite]) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [1] p(<) = [1] p(Cons) = [3] p(False) = [1] p(Nil) = [0] p(S) = [1] p(True) = [1] p(goal) = [5] x1 + [9] p(notEmpty) = [7] x1 + [2] p(ordered) = [9] p(ordered[Ite]) = [1] x1 + [13] Following rules are strictly oriented: ordered(Cons(x,Nil())) = [9] > [1] = True() ordered(Nil()) = [9] > [1] = True() Following rules are (at-least) weakly oriented: <(x,0()) = [1] >= [1] = False() <(0(),S(y)) = [1] >= [1] = True() <(S(x),S(y)) = [1] >= [1] = <(x,y) goal(xs) = [5] xs + [9] >= [9] = ordered(xs) notEmpty(Cons(x,xs)) = [23] >= [1] = True() notEmpty(Nil()) = [2] >= [1] = False() ordered(Cons(x',Cons(x,xs))) = [9] >= [14] = ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered[Ite](False(),xs) = [14] >= [1] = False() ordered[Ite](True(),Cons(x',Cons(x,xs))) = [14] >= [9] = ordered(xs) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 5: MI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) goal(xs) -> ordered(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered(Cons(x,Nil())) -> True() ordered(Nil()) -> True() ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs) - Signature: {2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(ordered[Ite]) = {1} Following symbols are considered usable: {<,goal,notEmpty,ordered,ordered[Ite]} TcT has computed the following interpretation: p(0) = [0] p(<) = [0] p(Cons) = [1] x_2 + [2] p(False) = [0] p(Nil) = [2] p(S) = [0] p(True) = [0] p(goal) = [4] x_1 + [13] p(notEmpty) = [4] p(ordered) = [1] x_1 + [11] p(ordered[Ite]) = [8] x_1 + [1] x_2 + [10] Following rules are strictly oriented: ordered(Cons(x',Cons(x,xs))) = [1] xs + [15] > [1] xs + [14] = ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) Following rules are (at-least) weakly oriented: <(x,0()) = [0] >= [0] = False() <(0(),S(y)) = [0] >= [0] = True() <(S(x),S(y)) = [0] >= [0] = <(x,y) goal(xs) = [4] xs + [13] >= [1] xs + [11] = ordered(xs) notEmpty(Cons(x,xs)) = [4] >= [0] = True() notEmpty(Nil()) = [4] >= [0] = False() ordered(Cons(x,Nil())) = [15] >= [0] = True() ordered(Nil()) = [13] >= [0] = True() ordered[Ite](False(),xs) = [1] xs + [10] >= [0] = False() ordered[Ite](True(),Cons(x',Cons(x,xs))) = [1] xs + [14] >= [1] xs + [11] = ordered(xs) * Step 6: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: <(x,0()) -> False() <(0(),S(y)) -> True() <(S(x),S(y)) -> <(x,y) goal(xs) -> ordered(xs) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() ordered(Cons(x,Nil())) -> True() ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs))) ordered(Nil()) -> True() ordered[Ite](False(),xs) -> False() ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs) - Signature: {2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0 ,Cons,False,Nil,S,True} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))