* Step 1: Sum WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
goal(xs) -> ordered(xs)
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
ordered(Cons(x,Nil())) -> True()
ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs)))
ordered(Nil()) -> True()
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
ordered[Ite](False(),xs) -> False()
ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs)
- Signature:
{2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0
,Cons,False,Nil,S,True}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
goal(xs) -> ordered(xs)
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
ordered(Cons(x,Nil())) -> True()
ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs)))
ordered(Nil()) -> True()
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
ordered[Ite](False(),xs) -> False()
ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs)
- Signature:
{2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0
,Cons,False,Nil,S,True}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(ordered[Ite]) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [2]
p(<) = [8]
p(Cons) = [0]
p(False) = [0]
p(Nil) = [3]
p(S) = [1] x1 + [8]
p(True) = [3]
p(goal) = [1] x1 + [0]
p(notEmpty) = [5] x1 + [6]
p(ordered) = [1]
p(ordered[Ite]) = [1] x1 + [4]
Following rules are strictly oriented:
notEmpty(Cons(x,xs)) = [6]
> [3]
= True()
notEmpty(Nil()) = [21]
> [0]
= False()
Following rules are (at-least) weakly oriented:
<(x,0()) = [8]
>= [0]
= False()
<(0(),S(y)) = [8]
>= [3]
= True()
<(S(x),S(y)) = [8]
>= [8]
= <(x,y)
goal(xs) = [1] xs + [0]
>= [1]
= ordered(xs)
ordered(Cons(x,Nil())) = [1]
>= [3]
= True()
ordered(Cons(x',Cons(x,xs))) = [1]
>= [12]
= ordered[Ite](<(x',x),Cons(x',Cons(x,xs)))
ordered(Nil()) = [1]
>= [3]
= True()
ordered[Ite](False(),xs) = [4]
>= [0]
= False()
ordered[Ite](True(),Cons(x',Cons(x,xs))) = [7]
>= [1]
= ordered(xs)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 3: MI WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
goal(xs) -> ordered(xs)
ordered(Cons(x,Nil())) -> True()
ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs)))
ordered(Nil()) -> True()
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
ordered[Ite](False(),xs) -> False()
ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs)
- Signature:
{2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0
,Cons,False,Nil,S,True}
+ Applied Processor:
MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
+ Details:
We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
The following argument positions are considered usable:
uargs(ordered[Ite]) = {1}
Following symbols are considered usable:
{<,goal,notEmpty,ordered,ordered[Ite]}
TcT has computed the following interpretation:
p(0) = [0]
p(<) = [0]
p(Cons) = [0]
p(False) = [0]
p(Nil) = [0]
p(S) = [0]
p(True) = [0]
p(goal) = [8]
p(notEmpty) = [0]
p(ordered) = [0]
p(ordered[Ite]) = [2] x_1 + [0]
Following rules are strictly oriented:
goal(xs) = [8]
> [0]
= ordered(xs)
Following rules are (at-least) weakly oriented:
<(x,0()) = [0]
>= [0]
= False()
<(0(),S(y)) = [0]
>= [0]
= True()
<(S(x),S(y)) = [0]
>= [0]
= <(x,y)
notEmpty(Cons(x,xs)) = [0]
>= [0]
= True()
notEmpty(Nil()) = [0]
>= [0]
= False()
ordered(Cons(x,Nil())) = [0]
>= [0]
= True()
ordered(Cons(x',Cons(x,xs))) = [0]
>= [0]
= ordered[Ite](<(x',x),Cons(x',Cons(x,xs)))
ordered(Nil()) = [0]
>= [0]
= True()
ordered[Ite](False(),xs) = [0]
>= [0]
= False()
ordered[Ite](True(),Cons(x',Cons(x,xs))) = [0]
>= [0]
= ordered(xs)
* Step 4: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
ordered(Cons(x,Nil())) -> True()
ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs)))
ordered(Nil()) -> True()
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
goal(xs) -> ordered(xs)
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
ordered[Ite](False(),xs) -> False()
ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs)
- Signature:
{2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0
,Cons,False,Nil,S,True}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(ordered[Ite]) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [1]
p(<) = [1]
p(Cons) = [3]
p(False) = [1]
p(Nil) = [0]
p(S) = [1]
p(True) = [1]
p(goal) = [5] x1 + [9]
p(notEmpty) = [7] x1 + [2]
p(ordered) = [9]
p(ordered[Ite]) = [1] x1 + [13]
Following rules are strictly oriented:
ordered(Cons(x,Nil())) = [9]
> [1]
= True()
ordered(Nil()) = [9]
> [1]
= True()
Following rules are (at-least) weakly oriented:
<(x,0()) = [1]
>= [1]
= False()
<(0(),S(y)) = [1]
>= [1]
= True()
<(S(x),S(y)) = [1]
>= [1]
= <(x,y)
goal(xs) = [5] xs + [9]
>= [9]
= ordered(xs)
notEmpty(Cons(x,xs)) = [23]
>= [1]
= True()
notEmpty(Nil()) = [2]
>= [1]
= False()
ordered(Cons(x',Cons(x,xs))) = [9]
>= [14]
= ordered[Ite](<(x',x),Cons(x',Cons(x,xs)))
ordered[Ite](False(),xs) = [14]
>= [1]
= False()
ordered[Ite](True(),Cons(x',Cons(x,xs))) = [14]
>= [9]
= ordered(xs)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 5: MI WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs)))
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
goal(xs) -> ordered(xs)
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
ordered(Cons(x,Nil())) -> True()
ordered(Nil()) -> True()
ordered[Ite](False(),xs) -> False()
ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs)
- Signature:
{2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0
,Cons,False,Nil,S,True}
+ Applied Processor:
MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
+ Details:
We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
The following argument positions are considered usable:
uargs(ordered[Ite]) = {1}
Following symbols are considered usable:
{<,goal,notEmpty,ordered,ordered[Ite]}
TcT has computed the following interpretation:
p(0) = [0]
p(<) = [0]
p(Cons) = [1] x_2 + [2]
p(False) = [0]
p(Nil) = [2]
p(S) = [0]
p(True) = [0]
p(goal) = [4] x_1 + [13]
p(notEmpty) = [4]
p(ordered) = [1] x_1 + [11]
p(ordered[Ite]) = [8] x_1 + [1] x_2 + [10]
Following rules are strictly oriented:
ordered(Cons(x',Cons(x,xs))) = [1] xs + [15]
> [1] xs + [14]
= ordered[Ite](<(x',x),Cons(x',Cons(x,xs)))
Following rules are (at-least) weakly oriented:
<(x,0()) = [0]
>= [0]
= False()
<(0(),S(y)) = [0]
>= [0]
= True()
<(S(x),S(y)) = [0]
>= [0]
= <(x,y)
goal(xs) = [4] xs + [13]
>= [1] xs + [11]
= ordered(xs)
notEmpty(Cons(x,xs)) = [4]
>= [0]
= True()
notEmpty(Nil()) = [4]
>= [0]
= False()
ordered(Cons(x,Nil())) = [15]
>= [0]
= True()
ordered(Nil()) = [13]
>= [0]
= True()
ordered[Ite](False(),xs) = [1] xs + [10]
>= [0]
= False()
ordered[Ite](True(),Cons(x',Cons(x,xs))) = [1] xs + [14]
>= [1] xs + [11]
= ordered(xs)
* Step 6: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
<(x,0()) -> False()
<(0(),S(y)) -> True()
<(S(x),S(y)) -> <(x,y)
goal(xs) -> ordered(xs)
notEmpty(Cons(x,xs)) -> True()
notEmpty(Nil()) -> False()
ordered(Cons(x,Nil())) -> True()
ordered(Cons(x',Cons(x,xs))) -> ordered[Ite](<(x',x),Cons(x',Cons(x,xs)))
ordered(Nil()) -> True()
ordered[Ite](False(),xs) -> False()
ordered[Ite](True(),Cons(x',Cons(x,xs))) -> ordered(xs)
- Signature:
{2,goal/1,notEmpty/1,ordered/1,ordered[Ite]/2} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {<,goal,notEmpty,ordered,ordered[Ite]} and constructors {0
,Cons,False,Nil,S,True}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(?,O(n^1))