* Step 1: Sum WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: dec(Cons(Cons(x,xs),Nil())) -> dec(Nil()) dec(Cons(Cons(x',xs'),Cons(x,xs))) -> dec(Cons(x,xs)) dec(Cons(Nil(),Cons(x,xs))) -> dec(Cons(x,xs)) dec(Cons(Nil(),Nil())) -> Nil() goal(x) -> nestdec(x) isNilNil(Cons(Cons(x,xs),Nil())) -> False() isNilNil(Cons(Cons(x',xs'),Cons(x,xs))) -> False() isNilNil(Cons(Nil(),Cons(x,xs))) -> False() isNilNil(Cons(Nil(),Nil())) -> True() nestdec(Cons(x,xs)) -> nestdec(dec(Cons(x,xs))) nestdec(Nil()) -> Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Nil()))))))))))))))))) number17(n) -> Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Nil()))))))))))))))))) - Signature: {dec/1,goal/1,isNilNil/1,nestdec/1,number17/1} / {Cons/2,False/0,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {dec,goal,isNilNil,nestdec ,number17} and constructors {Cons,False,Nil,True} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: dec(Cons(Cons(x,xs),Nil())) -> dec(Nil()) dec(Cons(Cons(x',xs'),Cons(x,xs))) -> dec(Cons(x,xs)) dec(Cons(Nil(),Cons(x,xs))) -> dec(Cons(x,xs)) dec(Cons(Nil(),Nil())) -> Nil() goal(x) -> nestdec(x) isNilNil(Cons(Cons(x,xs),Nil())) -> False() isNilNil(Cons(Cons(x',xs'),Cons(x,xs))) -> False() isNilNil(Cons(Nil(),Cons(x,xs))) -> False() isNilNil(Cons(Nil(),Nil())) -> True() nestdec(Cons(x,xs)) -> nestdec(dec(Cons(x,xs))) nestdec(Nil()) -> Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Nil()))))))))))))))))) number17(n) -> Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Nil()))))))))))))))))) - Signature: {dec/1,goal/1,isNilNil/1,nestdec/1,number17/1} / {Cons/2,False/0,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {dec,goal,isNilNil,nestdec ,number17} and constructors {Cons,False,Nil,True} + Applied Processor: Bounds {initialAutomaton = perSymbol, enrichment = match} + Details: The problem is match-bounded by 2. The enriched problem is compatible with follwoing automaton. Cons_0(1,1) -> 1 Cons_0(1,2) -> 1 Cons_0(1,3) -> 1 Cons_0(1,4) -> 1 Cons_0(2,1) -> 1 Cons_0(2,2) -> 1 Cons_0(2,3) -> 1 Cons_0(2,4) -> 1 Cons_0(3,1) -> 1 Cons_0(3,2) -> 1 Cons_0(3,3) -> 1 Cons_0(3,4) -> 1 Cons_0(4,1) -> 1 Cons_0(4,2) -> 1 Cons_0(4,3) -> 1 Cons_0(4,4) -> 1 Cons_1(1,1) -> 10 Cons_1(1,2) -> 10 Cons_1(1,3) -> 10 Cons_1(1,4) -> 10 Cons_1(2,1) -> 10 Cons_1(2,2) -> 10 Cons_1(2,3) -> 10 Cons_1(2,4) -> 10 Cons_1(3,1) -> 10 Cons_1(3,2) -> 10 Cons_1(3,3) -> 10 Cons_1(3,4) -> 10 Cons_1(4,1) -> 10 Cons_1(4,2) -> 10 Cons_1(4,3) -> 10 Cons_1(4,4) -> 10 Cons_1(10,10) -> 26 Cons_1(10,11) -> 6 Cons_1(10,11) -> 8 Cons_1(10,11) -> 9 Cons_1(10,12) -> 11 Cons_1(10,13) -> 12 Cons_1(10,14) -> 13 Cons_1(10,15) -> 14 Cons_1(10,16) -> 15 Cons_1(10,17) -> 16 Cons_1(10,18) -> 17 Cons_1(10,19) -> 18 Cons_1(10,20) -> 19 Cons_1(10,21) -> 20 Cons_1(10,22) -> 21 Cons_1(10,23) -> 22 Cons_1(10,24) -> 23 Cons_1(10,25) -> 24 Cons_1(10,26) -> 25 Cons_2(27,28) -> 6 Cons_2(29,30) -> 28 Cons_2(31,32) -> 30 Cons_2(33,34) -> 32 Cons_2(35,36) -> 34 Cons_2(37,38) -> 36 Cons_2(39,40) -> 38 Cons_2(41,42) -> 40 Cons_2(43,44) -> 42 Cons_2(45,46) -> 44 Cons_2(47,48) -> 46 Cons_2(49,50) -> 48 Cons_2(51,52) -> 50 Cons_2(53,54) -> 52 Cons_2(55,56) -> 54 Cons_2(57,58) -> 56 Cons_2(59,60) -> 58 Cons_2(60,28) -> 8 False_0() -> 2 False_1() -> 7 Nil_0() -> 3 Nil_1() -> 5 Nil_1() -> 10 Nil_2() -> 27 Nil_2() -> 29 Nil_2() -> 31 Nil_2() -> 33 Nil_2() -> 35 Nil_2() -> 37 Nil_2() -> 39 Nil_2() -> 41 Nil_2() -> 43 Nil_2() -> 45 Nil_2() -> 47 Nil_2() -> 49 Nil_2() -> 51 Nil_2() -> 53 Nil_2() -> 55 Nil_2() -> 57 Nil_2() -> 59 Nil_2() -> 60 True_0() -> 4 True_1() -> 7 dec_0(1) -> 5 dec_0(2) -> 5 dec_0(3) -> 5 dec_0(4) -> 5 dec_1(10) -> 5 goal_0(1) -> 6 goal_0(2) -> 6 goal_0(3) -> 6 goal_0(4) -> 6 isNilNil_0(1) -> 7 isNilNil_0(2) -> 7 isNilNil_0(3) -> 7 isNilNil_0(4) -> 7 nestdec_0(1) -> 8 nestdec_0(2) -> 8 nestdec_0(3) -> 8 nestdec_0(4) -> 8 nestdec_1(1) -> 6 nestdec_1(2) -> 6 nestdec_1(3) -> 6 nestdec_1(4) -> 6 nestdec_1(5) -> 6 nestdec_1(5) -> 8 number17_0(1) -> 9 number17_0(2) -> 9 number17_0(3) -> 9 number17_0(4) -> 9 * Step 3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: dec(Cons(Cons(x,xs),Nil())) -> dec(Nil()) dec(Cons(Cons(x',xs'),Cons(x,xs))) -> dec(Cons(x,xs)) dec(Cons(Nil(),Cons(x,xs))) -> dec(Cons(x,xs)) dec(Cons(Nil(),Nil())) -> Nil() goal(x) -> nestdec(x) isNilNil(Cons(Cons(x,xs),Nil())) -> False() isNilNil(Cons(Cons(x',xs'),Cons(x,xs))) -> False() isNilNil(Cons(Nil(),Cons(x,xs))) -> False() isNilNil(Cons(Nil(),Nil())) -> True() nestdec(Cons(x,xs)) -> nestdec(dec(Cons(x,xs))) nestdec(Nil()) -> Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Nil()))))))))))))))))) number17(n) -> Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Cons(Nil() ,Nil()))))))))))))))))) - Signature: {dec/1,goal/1,isNilNil/1,nestdec/1,number17/1} / {Cons/2,False/0,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {dec,goal,isNilNil,nestdec ,number17} and constructors {Cons,False,Nil,True} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))