* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys goal(xs) -> naiverev(xs) naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {app,goal,naiverev,notEmpty} and constructors {Cons,False ,Nil,True} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys goal(xs) -> naiverev(xs) naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {app,goal,naiverev,notEmpty} and constructors {Cons,False ,Nil,True} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: app(y,z){y -> Cons(x,y)} = app(Cons(x,y),z) ->^+ Cons(x,app(y,z)) = C[app(y,z) = app(y,z){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys goal(xs) -> naiverev(xs) naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {app,goal,naiverev,notEmpty} and constructors {Cons,False ,Nil,True} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) app#(Nil(),ys) -> c_2() goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) naiverev#(Nil()) -> c_5() notEmpty#(Cons(x,xs)) -> c_6() notEmpty#(Nil()) -> c_7() Weak DPs and mark the set of starting terms. ** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) app#(Nil(),ys) -> c_2() goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) naiverev#(Nil()) -> c_5() notEmpty#(Cons(x,xs)) -> c_6() notEmpty#(Nil()) -> c_7() - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys goal(xs) -> naiverev(xs) naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) app#(Nil(),ys) -> c_2() goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) naiverev#(Nil()) -> c_5() notEmpty#(Cons(x,xs)) -> c_6() notEmpty#(Nil()) -> c_7() ** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) app#(Nil(),ys) -> c_2() goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) naiverev#(Nil()) -> c_5() notEmpty#(Cons(x,xs)) -> c_6() notEmpty#(Nil()) -> c_7() - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,5,6,7} by application of Pre({2,5,6,7}) = {1,3,4}. Here rules are labelled as follows: 1: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) 2: app#(Nil(),ys) -> c_2() 3: goal#(xs) -> c_3(naiverev#(xs)) 4: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) 5: naiverev#(Nil()) -> c_5() 6: notEmpty#(Cons(x,xs)) -> c_6() 7: notEmpty#(Nil()) -> c_7() ** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak DPs: app#(Nil(),ys) -> c_2() naiverev#(Nil()) -> c_5() notEmpty#(Cons(x,xs)) -> c_6() notEmpty#(Nil()) -> c_7() - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) -->_1 app#(Nil(),ys) -> c_2():4 -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 2:S:goal#(xs) -> c_3(naiverev#(xs)) -->_1 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3 -->_1 naiverev#(Nil()) -> c_5():5 3:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) -->_2 naiverev#(Nil()) -> c_5():5 -->_1 app#(Nil(),ys) -> c_2():4 -->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3 -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 4:W:app#(Nil(),ys) -> c_2() 5:W:naiverev#(Nil()) -> c_5() 6:W:notEmpty#(Cons(x,xs)) -> c_6() 7:W:notEmpty#(Nil()) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: notEmpty#(Nil()) -> c_7() 6: notEmpty#(Cons(x,xs)) -> c_6() 5: naiverev#(Nil()) -> c_5() 4: app#(Nil(),ys) -> c_2() ** Step 1.b:5: RemoveHeads WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 2:S:goal#(xs) -> c_3(naiverev#(xs)) -->_1 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3 3:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) -->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3 -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,goal#(xs) -> c_3(naiverev#(xs)))] ** Step 1.b:6: Decompose WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) - Weak DPs: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} Problem (S) - Strict DPs: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} *** Step 1.b:6.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) - Weak DPs: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) The strictly oriented rules are moved into the weak component. **** Step 1.b:6.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) - Weak DPs: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_4) = {1,2} Following symbols are considered usable: {app,naiverev,app#,goal#,naiverev#,notEmpty#} TcT has computed the following interpretation: p(Cons) = 1 + x2 p(False) = 0 p(Nil) = 1 p(True) = 1 p(app) = x1 + x2 p(goal) = 1 + x1^2 p(naiverev) = 2*x1 p(notEmpty) = 1 + x1 + x1^2 p(app#) = 2*x1 + x1*x2 p(goal#) = 2 p(naiverev#) = 4 + 3*x1 + 5*x1^2 p(notEmpty#) = 2 + x1 + x1^2 p(c_1) = x1 p(c_2) = 0 p(c_3) = 0 p(c_4) = 1 + x1 + x2 p(c_5) = 0 p(c_6) = 0 p(c_7) = 0 Following rules are strictly oriented: app#(Cons(x,xs),ys) = 2 + 2*xs + xs*ys + ys > 2*xs + xs*ys = c_1(app#(xs,ys)) Following rules are (at-least) weakly oriented: naiverev#(Cons(x,xs)) = 12 + 13*xs + 5*xs^2 >= 5 + 11*xs + 5*xs^2 = c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) app(Cons(x,xs),ys) = 1 + xs + ys >= 1 + xs + ys = Cons(x,app(xs,ys)) app(Nil(),ys) = 1 + ys >= ys = ys naiverev(Cons(x,xs)) = 2 + 2*xs >= 2 + 2*xs = app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) = 2 >= 1 = Nil() **** Step 1.b:6.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 1.b:6.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 2:W:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) -->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):2 -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) 1: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) **** Step 1.b:6.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 1.b:6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):2 -->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):1 2:W:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) *** Step 1.b:6.b:2: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) -->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) *** Step 1.b:6.b:3: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) *** Step 1.b:6.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) The strictly oriented rules are moved into the weak component. **** Step 1.b:6.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1} Following symbols are considered usable: {app#,goal#,naiverev#,notEmpty#} TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [8] p(False) = [0] p(Nil) = [0] p(True) = [2] p(app) = [1] x1 + [1] x2 + [0] p(goal) = [1] x1 + [8] p(naiverev) = [8] x1 + [1] p(notEmpty) = [1] x1 + [1] p(app#) = [1] x1 + [2] p(goal#) = [1] x1 + [1] p(naiverev#) = [2] x1 + [0] p(notEmpty#) = [8] x1 + [1] p(c_1) = [2] x1 + [1] p(c_2) = [0] p(c_3) = [1] x1 + [4] p(c_4) = [1] x1 + [9] p(c_5) = [0] p(c_6) = [4] p(c_7) = [1] Following rules are strictly oriented: naiverev#(Cons(x,xs)) = [2] x + [2] xs + [16] > [2] xs + [9] = c_4(naiverev#(xs)) Following rules are (at-least) weakly oriented: **** Step 1.b:6.b:4.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 1.b:6.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) -->_1 naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) **** Step 1.b:6.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))