* Step 1: Sum WORST_CASE(Omega(n^1),O(n^3))
    + Considered Problem:
        - Strict TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            goal(xs,ys) -> mul0(xs,ys)
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2} / {Cons/2,Nil/0,S/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0,goal,mul0} and constructors {Cons,Nil,S}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            goal(xs,ys) -> mul0(xs,ys)
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2} / {Cons/2,Nil/0,S/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0,goal,mul0} and constructors {Cons,Nil,S}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          add0(y,z){y -> Cons(x,y)} =
            add0(Cons(x,y),z) ->^+ add0(y,Cons(S(),z))
              = C[add0(y,Cons(S(),z)) = add0(y,z){z -> Cons(S(),z)}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            goal(xs,ys) -> mul0(xs,ys)
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2} / {Cons/2,Nil/0,S/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0,goal,mul0} and constructors {Cons,Nil,S}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
          add0#(Nil(),y) -> c_2()
          goal#(xs,ys) -> c_3(mul0#(xs,ys))
          mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
          mul0#(Nil(),y) -> c_5()
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
            add0#(Nil(),y) -> c_2()
            goal#(xs,ys) -> c_3(mul0#(xs,ys))
            mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
            mul0#(Nil(),y) -> c_5()
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            goal(xs,ys) -> mul0(xs,ys)
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
          add0(Nil(),y) -> y
          mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
          mul0(Nil(),y) -> Nil()
          add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
          add0#(Nil(),y) -> c_2()
          goal#(xs,ys) -> c_3(mul0#(xs,ys))
          mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
          mul0#(Nil(),y) -> c_5()
** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
            add0#(Nil(),y) -> c_2()
            goal#(xs,ys) -> c_3(mul0#(xs,ys))
            mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
            mul0#(Nil(),y) -> c_5()
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,5}
        by application of
          Pre({2,5}) = {1,3,4}.
        Here rules are labelled as follows:
          1: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
          2: add0#(Nil(),y) -> c_2()
          3: goal#(xs,ys) -> c_3(mul0#(xs,ys))
          4: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
          5: mul0#(Nil(),y) -> c_5()
** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
            goal#(xs,ys) -> c_3(mul0#(xs,ys))
            mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        - Weak DPs:
            add0#(Nil(),y) -> c_2()
            mul0#(Nil(),y) -> c_5()
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
             -->_1 add0#(Nil(),y) -> c_2():4
             -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1
          
          2:S:goal#(xs,ys) -> c_3(mul0#(xs,ys))
             -->_1 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):3
             -->_1 mul0#(Nil(),y) -> c_5():5
          
          3:S:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
             -->_2 mul0#(Nil(),y) -> c_5():5
             -->_1 add0#(Nil(),y) -> c_2():4
             -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):3
             -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1
          
          4:W:add0#(Nil(),y) -> c_2()
             
          
          5:W:mul0#(Nil(),y) -> c_5()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: mul0#(Nil(),y) -> c_5()
          4: add0#(Nil(),y) -> c_2()
** Step 1.b:5: RemoveHeads WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
            goal#(xs,ys) -> c_3(mul0#(xs,ys))
            mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
           -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1
        
        2:S:goal#(xs,ys) -> c_3(mul0#(xs,ys))
           -->_1 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):3
        
        3:S:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
           -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):3
           -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(2,goal#(xs,ys) -> c_3(mul0#(xs,ys)))]
** Step 1.b:6: Decompose WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
            mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
          - Weak DPs:
              mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
          - Weak TRS:
              add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
              add0(Nil(),y) -> y
              mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
              mul0(Nil(),y) -> Nil()
          - Signature:
              {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
        
        Problem (S)
          - Strict DPs:
              mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
          - Weak DPs:
              add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
          - Weak TRS:
              add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
              add0(Nil(),y) -> y
              mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
              mul0(Nil(),y) -> Nil()
          - Signature:
              {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
*** Step 1.b:6.a:1: DecomposeDG WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        - Weak DPs:
            mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        and a lower component
          add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        Further, following extension rules are added to the lower component.
          mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y)
          mul0#(Cons(x,xs),y) -> mul0#(xs,y)
**** Step 1.b:6.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:6.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_4) = {1,2}
        
        Following symbols are considered usable:
          {add0#,goal#,mul0#}
        TcT has computed the following interpretation:
           p(Cons) = [1] x2 + [4]          
            p(Nil) = [2]                   
              p(S) = [8]                   
           p(add0) = [1] x2 + [9]          
           p(goal) = [4] x1 + [0]          
           p(mul0) = [1] x1 + [14]         
          p(add0#) = [1]                   
          p(goal#) = [1] x1 + [0]          
          p(mul0#) = [4] x1 + [0]          
            p(c_1) = [1] x1 + [0]          
            p(c_2) = [1]                   
            p(c_3) = [8] x1 + [0]          
            p(c_4) = [1] x1 + [1] x2 + [11]
            p(c_5) = [0]                   
        
        Following rules are strictly oriented:
        mul0#(Cons(x,xs),y) = [4] xs + [16]                       
                            > [4] xs + [12]                       
                            = c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        
        
        Following rules are (at-least) weakly oriented:
        
***** Step 1.b:6.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:6.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
             -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
***** Step 1.b:6.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 1.b:6.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        - Weak DPs:
            mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y)
            mul0#(Cons(x,xs),y) -> mul0#(xs,y)
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:6.a:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        - Weak DPs:
            mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y)
            mul0#(Cons(x,xs),y) -> mul0#(xs,y)
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_1) = {1}
        
        Following symbols are considered usable:
          {add0,mul0,add0#,goal#,mul0#}
        TcT has computed the following interpretation:
           p(Cons) = 1 + x2                        
            p(Nil) = 0                             
              p(S) = 1                             
           p(add0) = x1 + x2                       
           p(goal) = 1 + 4*x1 + x1*x2 + x1^2 + x2^2
           p(mul0) = x1*x2 + 2*x1^2                
          p(add0#) = 3 + 2*x1                      
          p(goal#) = 1                             
          p(mul0#) = 2*x1 + 3*x1*x2 + 6*x1^2 + x2  
            p(c_1) = x1                            
            p(c_2) = 0                             
            p(c_3) = 0                             
            p(c_4) = 1                             
            p(c_5) = 1                             
        
        Following rules are strictly oriented:
        add0#(Cons(x,xs),y) = 5 + 2*xs                  
                            > 3 + 2*xs                  
                            = c_1(add0#(xs,Cons(S(),y)))
        
        
        Following rules are (at-least) weakly oriented:
        mul0#(Cons(x,xs),y) =  8 + 14*xs + 3*xs*y + 6*xs^2 + 4*y
                            >= 3 + 2*xs*y + 4*xs^2              
                            =  add0#(mul0(xs,y),y)              
        
        mul0#(Cons(x,xs),y) =  8 + 14*xs + 3*xs*y + 6*xs^2 + 4*y
                            >= 2*xs + 3*xs*y + 6*xs^2 + y       
                            =  mul0#(xs,y)                      
        
         add0(Cons(x,xs),y) =  1 + xs + y                       
                            >= 1 + xs + y                       
                            =  add0(xs,Cons(S(),y))             
        
              add0(Nil(),y) =  y                                
                            >= y                                
                            =  y                                
        
         mul0(Cons(x,xs),y) =  2 + 4*xs + xs*y + 2*xs^2 + y     
                            >= xs*y + 2*xs^2 + y                
                            =  add0(mul0(xs,y),y)               
        
              mul0(Nil(),y) =  0                                
                            >= 0                                
                            =  Nil()                            
        
***** Step 1.b:6.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
            mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y)
            mul0#(Cons(x,xs),y) -> mul0#(xs,y)
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:6.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
            mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y)
            mul0#(Cons(x,xs),y) -> mul0#(xs,y)
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
             -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1
          
          2:W:mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y)
             -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):1
          
          3:W:mul0#(Cons(x,xs),y) -> mul0#(xs,y)
             -->_1 mul0#(Cons(x,xs),y) -> mul0#(xs,y):3
             -->_1 mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: mul0#(Cons(x,xs),y) -> mul0#(xs,y)
          2: mul0#(Cons(x,xs),y) -> add0#(mul0(xs,y),y)
          1: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
***** Step 1.b:6.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        - Weak DPs:
            add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
             -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):2
             -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):1
          
          2:W:add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
             -->_1 add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y))):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: add0#(Cons(x,xs),y) -> c_1(add0#(xs,Cons(S(),y)))
*** Step 1.b:6.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y))
             -->_2 mul0#(Cons(x,xs),y) -> c_4(add0#(mul0(xs,y),y),mul0#(xs,y)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
*** Step 1.b:6.b:3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
        - Weak TRS:
            add0(Cons(x,xs),y) -> add0(xs,Cons(S(),y))
            add0(Nil(),y) -> y
            mul0(Cons(x,xs),y) -> add0(mul0(xs,y),y)
            mul0(Nil(),y) -> Nil()
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
*** Step 1.b:6.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
          
        The strictly oriented rules are moved into the weak component.
**** Step 1.b:6.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_4) = {1}
        
        Following symbols are considered usable:
          {add0#,goal#,mul0#}
        TcT has computed the following interpretation:
           p(Cons) = [1] x1 + [1] x2 + [8] 
            p(Nil) = [0]                   
              p(S) = [0]                   
           p(add0) = [1] x1 + [2] x2 + [0] 
           p(goal) = [1] x1 + [1] x2 + [0] 
           p(mul0) = [1] x1 + [1] x2 + [0] 
          p(add0#) = [0]                   
          p(goal#) = [2]                   
          p(mul0#) = [2] x1 + [2] x2 + [15]
            p(c_1) = [2] x1 + [0]          
            p(c_2) = [0]                   
            p(c_3) = [1] x1 + [1]          
            p(c_4) = [1] x1 + [15]         
            p(c_5) = [1]                   
        
        Following rules are strictly oriented:
        mul0#(Cons(x,xs),y) = [2] x + [2] xs + [2] y + [31]
                            > [2] xs + [2] y + [30]        
                            = c_4(mul0#(xs,y))             
        
        
        Following rules are (at-least) weakly oriented:
        
**** Step 1.b:6.b:4.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:6.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
             -->_1 mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: mul0#(Cons(x,xs),y) -> c_4(mul0#(xs,y))
**** Step 1.b:6.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {add0/2,goal/2,mul0/2,add0#/2,goal#/2,mul0#/2} / {Cons/2,Nil/0,S/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add0#,goal#,mul0#} and constructors {Cons,Nil,S}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^3))