0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 389 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 105 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 557 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 92 ms)
↳24 CpxRNTS
↳25 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳26 CpxRNTS
↳27 IntTrsBoundProof (UPPER BOUND(ID), 947 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 17 ms)
↳30 CpxRNTS
↳31 FinalProof (⇔, 0 ms)
↳32 BOUNDS(1, n^3)
mul0(Cons(x, xs), y) → add0(mul0(xs, y), y)
add0(Cons(x, xs), y) → add0(xs, Cons(S, y))
mul0(Nil, y) → Nil
add0(Nil, y) → y
goal(xs, ys) → mul0(xs, ys)
mul0(Cons(x, xs), y) → add0(mul0(xs, y), y) [1]
add0(Cons(x, xs), y) → add0(xs, Cons(S, y)) [1]
mul0(Nil, y) → Nil [1]
add0(Nil, y) → y [1]
goal(xs, ys) → mul0(xs, ys) [1]
mul0(Cons(x, xs), y) → add0(mul0(xs, y), y) [1]
add0(Cons(x, xs), y) → add0(xs, Cons(S, y)) [1]
mul0(Nil, y) → Nil [1]
add0(Nil, y) → y [1]
goal(xs, ys) → mul0(xs, ys) [1]
mul0 :: Cons:Nil → Cons:Nil → Cons:Nil Cons :: S → Cons:Nil → Cons:Nil add0 :: Cons:Nil → Cons:Nil → Cons:Nil S :: S Nil :: Cons:Nil goal :: Cons:Nil → Cons:Nil → Cons:Nil |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
goal
mul0
add0
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
S => 0
Nil => 0
add0(z, z') -{ 1 }→ y :|: y >= 0, z = 0, z' = y
add0(z, z') -{ 1 }→ add0(xs, 1 + 0 + y) :|: z = 1 + x + xs, xs >= 0, x >= 0, y >= 0, z' = y
goal(z, z') -{ 1 }→ mul0(xs, ys) :|: xs >= 0, z = xs, z' = ys, ys >= 0
mul0(z, z') -{ 2 }→ add0(add0(mul0(xs', y), y), y) :|: x >= 0, x' >= 0, xs' >= 0, y >= 0, z = 1 + x + (1 + x' + xs'), z' = y
mul0(z, z') -{ 2 }→ add0(0, y) :|: x >= 0, y >= 0, z' = y, z = 1 + x + 0
mul0(z, z') -{ 1 }→ 0 :|: y >= 0, z = 0, z' = y
add0(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add0(z, z') -{ 1 }→ add0(xs, 1 + 0 + z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
goal(z, z') -{ 1 }→ mul0(z, z') :|: z >= 0, z' >= 0
mul0(z, z') -{ 2 }→ add0(add0(mul0(xs', z'), z'), z') :|: x >= 0, x' >= 0, xs' >= 0, z' >= 0, z = 1 + x + (1 + x' + xs')
mul0(z, z') -{ 2 }→ add0(0, z') :|: z - 1 >= 0, z' >= 0
mul0(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
{ add0 } { mul0 } { goal } |
add0(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add0(z, z') -{ 1 }→ add0(xs, 1 + 0 + z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
goal(z, z') -{ 1 }→ mul0(z, z') :|: z >= 0, z' >= 0
mul0(z, z') -{ 2 }→ add0(add0(mul0(xs', z'), z'), z') :|: x >= 0, x' >= 0, xs' >= 0, z' >= 0, z = 1 + x + (1 + x' + xs')
mul0(z, z') -{ 2 }→ add0(0, z') :|: z - 1 >= 0, z' >= 0
mul0(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
add0(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add0(z, z') -{ 1 }→ add0(xs, 1 + 0 + z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
goal(z, z') -{ 1 }→ mul0(z, z') :|: z >= 0, z' >= 0
mul0(z, z') -{ 2 }→ add0(add0(mul0(xs', z'), z'), z') :|: x >= 0, x' >= 0, xs' >= 0, z' >= 0, z = 1 + x + (1 + x' + xs')
mul0(z, z') -{ 2 }→ add0(0, z') :|: z - 1 >= 0, z' >= 0
mul0(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
add0: runtime: ?, size: O(n1) [z + z'] |
add0(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
add0(z, z') -{ 1 }→ add0(xs, 1 + 0 + z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
goal(z, z') -{ 1 }→ mul0(z, z') :|: z >= 0, z' >= 0
mul0(z, z') -{ 2 }→ add0(add0(mul0(xs', z'), z'), z') :|: x >= 0, x' >= 0, xs' >= 0, z' >= 0, z = 1 + x + (1 + x' + xs')
mul0(z, z') -{ 2 }→ add0(0, z') :|: z - 1 >= 0, z' >= 0
mul0(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
add0: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
add0(z, z') -{ 2 + xs }→ s' :|: s' >= 0, s' <= 1 * xs + 1 * (1 + 0 + z'), z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
add0(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
goal(z, z') -{ 1 }→ mul0(z, z') :|: z >= 0, z' >= 0
mul0(z, z') -{ 3 }→ s :|: s >= 0, s <= 1 * 0 + 1 * z', z - 1 >= 0, z' >= 0
mul0(z, z') -{ 2 }→ add0(add0(mul0(xs', z'), z'), z') :|: x >= 0, x' >= 0, xs' >= 0, z' >= 0, z = 1 + x + (1 + x' + xs')
mul0(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
add0: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
add0(z, z') -{ 2 + xs }→ s' :|: s' >= 0, s' <= 1 * xs + 1 * (1 + 0 + z'), z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
add0(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
goal(z, z') -{ 1 }→ mul0(z, z') :|: z >= 0, z' >= 0
mul0(z, z') -{ 3 }→ s :|: s >= 0, s <= 1 * 0 + 1 * z', z - 1 >= 0, z' >= 0
mul0(z, z') -{ 2 }→ add0(add0(mul0(xs', z'), z'), z') :|: x >= 0, x' >= 0, xs' >= 0, z' >= 0, z = 1 + x + (1 + x' + xs')
mul0(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
add0: runtime: O(n1) [1 + z], size: O(n1) [z + z'] mul0: runtime: ?, size: O(n2) [2·z·z' + z'] |
add0(z, z') -{ 2 + xs }→ s' :|: s' >= 0, s' <= 1 * xs + 1 * (1 + 0 + z'), z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
add0(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
goal(z, z') -{ 1 }→ mul0(z, z') :|: z >= 0, z' >= 0
mul0(z, z') -{ 3 }→ s :|: s >= 0, s <= 1 * 0 + 1 * z', z - 1 >= 0, z' >= 0
mul0(z, z') -{ 2 }→ add0(add0(mul0(xs', z'), z'), z') :|: x >= 0, x' >= 0, xs' >= 0, z' >= 0, z = 1 + x + (1 + x' + xs')
mul0(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
add0: runtime: O(n1) [1 + z], size: O(n1) [z + z'] mul0: runtime: O(n3) [4 + 4·z + 3·z·z' + 4·z2·z'], size: O(n2) [2·z·z' + z'] |
add0(z, z') -{ 2 + xs }→ s' :|: s' >= 0, s' <= 1 * xs + 1 * (1 + 0 + z'), z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
add0(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
goal(z, z') -{ 5 + 4·z + 3·z·z' + 4·z2·z' }→ s3 :|: s3 >= 0, s3 <= 2 * (z' * z) + 1 * z', z >= 0, z' >= 0
mul0(z, z') -{ 3 }→ s :|: s >= 0, s <= 1 * 0 + 1 * z', z - 1 >= 0, z' >= 0
mul0(z, z') -{ 8 + s'' + s1 + 4·xs' + 3·xs'·z' + 4·xs'2·z' }→ s2 :|: s'' >= 0, s'' <= 2 * (z' * xs') + 1 * z', s1 >= 0, s1 <= 1 * s'' + 1 * z', s2 >= 0, s2 <= 1 * s1 + 1 * z', x >= 0, x' >= 0, xs' >= 0, z' >= 0, z = 1 + x + (1 + x' + xs')
mul0(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
add0: runtime: O(n1) [1 + z], size: O(n1) [z + z'] mul0: runtime: O(n3) [4 + 4·z + 3·z·z' + 4·z2·z'], size: O(n2) [2·z·z' + z'] |
add0(z, z') -{ 2 + xs }→ s' :|: s' >= 0, s' <= 1 * xs + 1 * (1 + 0 + z'), z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
add0(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
goal(z, z') -{ 5 + 4·z + 3·z·z' + 4·z2·z' }→ s3 :|: s3 >= 0, s3 <= 2 * (z' * z) + 1 * z', z >= 0, z' >= 0
mul0(z, z') -{ 3 }→ s :|: s >= 0, s <= 1 * 0 + 1 * z', z - 1 >= 0, z' >= 0
mul0(z, z') -{ 8 + s'' + s1 + 4·xs' + 3·xs'·z' + 4·xs'2·z' }→ s2 :|: s'' >= 0, s'' <= 2 * (z' * xs') + 1 * z', s1 >= 0, s1 <= 1 * s'' + 1 * z', s2 >= 0, s2 <= 1 * s1 + 1 * z', x >= 0, x' >= 0, xs' >= 0, z' >= 0, z = 1 + x + (1 + x' + xs')
mul0(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
add0: runtime: O(n1) [1 + z], size: O(n1) [z + z'] mul0: runtime: O(n3) [4 + 4·z + 3·z·z' + 4·z2·z'], size: O(n2) [2·z·z' + z'] goal: runtime: ?, size: O(n2) [2·z·z' + z'] |
add0(z, z') -{ 2 + xs }→ s' :|: s' >= 0, s' <= 1 * xs + 1 * (1 + 0 + z'), z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0
add0(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
goal(z, z') -{ 5 + 4·z + 3·z·z' + 4·z2·z' }→ s3 :|: s3 >= 0, s3 <= 2 * (z' * z) + 1 * z', z >= 0, z' >= 0
mul0(z, z') -{ 3 }→ s :|: s >= 0, s <= 1 * 0 + 1 * z', z - 1 >= 0, z' >= 0
mul0(z, z') -{ 8 + s'' + s1 + 4·xs' + 3·xs'·z' + 4·xs'2·z' }→ s2 :|: s'' >= 0, s'' <= 2 * (z' * xs') + 1 * z', s1 >= 0, s1 <= 1 * s'' + 1 * z', s2 >= 0, s2 <= 1 * s1 + 1 * z', x >= 0, x' >= 0, xs' >= 0, z' >= 0, z = 1 + x + (1 + x' + xs')
mul0(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
add0: runtime: O(n1) [1 + z], size: O(n1) [z + z'] mul0: runtime: O(n3) [4 + 4·z + 3·z·z' + 4·z2·z'], size: O(n2) [2·z·z' + z'] goal: runtime: O(n3) [5 + 4·z + 3·z·z' + 4·z2·z'], size: O(n2) [2·z·z' + z'] |