* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            goal(x) -> list(x)
            list(Cons(x,xs)) -> list(xs)
            list(Nil()) -> True()
            list(Nil()) -> isEmpty[Match](Nil())
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
        - Signature:
            {goal/1,list/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0,isEmpty[Match]/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {goal,list,notEmpty} and constructors {Cons,False,Nil,True
            ,isEmpty[Match]}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            goal(x) -> list(x)
            list(Cons(x,xs)) -> list(xs)
            list(Nil()) -> True()
            list(Nil()) -> isEmpty[Match](Nil())
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
        - Signature:
            {goal/1,list/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0,isEmpty[Match]/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {goal,list,notEmpty} and constructors {Cons,False,Nil,True
            ,isEmpty[Match]}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          list(y){y -> Cons(x,y)} =
            list(Cons(x,y)) ->^+ list(y)
              = C[list(y) = list(y){}]

** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            goal(x) -> list(x)
            list(Cons(x,xs)) -> list(xs)
            list(Nil()) -> True()
            list(Nil()) -> isEmpty[Match](Nil())
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
        - Signature:
            {goal/1,list/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0,isEmpty[Match]/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {goal,list,notEmpty} and constructors {Cons,False,Nil,True
            ,isEmpty[Match]}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 1.
        The enriched problem is compatible with follwoing automaton.
          Cons_0(2,2) -> 2
          False_0() -> 2
          False_1() -> 1
          Nil_0() -> 2
          Nil_1() -> 3
          True_0() -> 2
          True_1() -> 1
          goal_0(2) -> 1
          isEmpty[Match]_0(2) -> 2
          isEmpty[Match]_1(3) -> 1
          list_0(2) -> 1
          list_1(2) -> 1
          notEmpty_0(2) -> 1
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            goal(x) -> list(x)
            list(Cons(x,xs)) -> list(xs)
            list(Nil()) -> True()
            list(Nil()) -> isEmpty[Match](Nil())
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
        - Signature:
            {goal/1,list/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0,isEmpty[Match]/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {goal,list,notEmpty} and constructors {Cons,False,Nil,True
            ,isEmpty[Match]}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))