* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: @(Cons(x,xs),ys) -> Cons(x,@(xs,ys)) @(Nil(),ys) -> ys eqList(Cons(x,xs),Cons(y,ys)) -> and(eqList(x,y),eqList(xs,ys)) eqList(Cons(x,xs),Nil()) -> False() eqList(Nil(),Cons(y,ys)) -> False() eqList(Nil(),Nil()) -> True() gcd(Cons(x,xs),Nil()) -> Nil() gcd(Cons(x',xs'),Cons(x,xs)) -> gcd[Ite](eqList(Cons(x',xs'),Cons(x,xs)),Cons(x',xs'),Cons(x,xs)) gcd(Nil(),Cons(x,xs)) -> Nil() gcd(Nil(),Nil()) -> Nil() goal(x,y) -> gcd(x,y) gt0(Cons(x,xs),Nil()) -> True() gt0(Cons(x',xs'),Cons(x,xs)) -> gt0(xs',xs) gt0(Nil(),y) -> False() lgth(Cons(x,xs)) -> @(Cons(Nil(),Nil()),lgth(xs)) lgth(Nil()) -> Nil() monus(x,y) -> monus[Ite](eqList(lgth(y),Cons(Nil(),Nil())),x,y) - Weak TRS: and(False(),False()) -> False() and(False(),True()) -> False() and(True(),False()) -> False() and(True(),True()) -> True() gcd[False][Ite](False(),x,y) -> gcd(x,monus(y,x)) gcd[False][Ite](True(),x,y) -> gcd(monus(x,y),y) gcd[Ite](False(),x,y) -> gcd[False][Ite](gt0(x,y),x,y) gcd[Ite](True(),x,y) -> x monus[Ite](False(),Cons(x',xs'),Cons(x,xs)) -> monus(xs',xs) monus[Ite](True(),Cons(x,xs),y) -> xs - Signature: {@/2,and/2,eqList/2,gcd/2,gcd[False][Ite]/3,gcd[Ite]/3,goal/2,gt0/2,lgth/1,monus/2,monus[Ite]/3} / {Cons/2 ,False/0,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {@,and,eqList,gcd,gcd[False][Ite],gcd[Ite],goal,gt0,lgth ,monus,monus[Ite]} and constructors {Cons,False,Nil,True} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: @(Cons(x,xs),ys) -> Cons(x,@(xs,ys)) @(Nil(),ys) -> ys eqList(Cons(x,xs),Cons(y,ys)) -> and(eqList(x,y),eqList(xs,ys)) eqList(Cons(x,xs),Nil()) -> False() eqList(Nil(),Cons(y,ys)) -> False() eqList(Nil(),Nil()) -> True() gcd(Cons(x,xs),Nil()) -> Nil() gcd(Cons(x',xs'),Cons(x,xs)) -> gcd[Ite](eqList(Cons(x',xs'),Cons(x,xs)),Cons(x',xs'),Cons(x,xs)) gcd(Nil(),Cons(x,xs)) -> Nil() gcd(Nil(),Nil()) -> Nil() goal(x,y) -> gcd(x,y) gt0(Cons(x,xs),Nil()) -> True() gt0(Cons(x',xs'),Cons(x,xs)) -> gt0(xs',xs) gt0(Nil(),y) -> False() lgth(Cons(x,xs)) -> @(Cons(Nil(),Nil()),lgth(xs)) lgth(Nil()) -> Nil() monus(x,y) -> monus[Ite](eqList(lgth(y),Cons(Nil(),Nil())),x,y) - Weak TRS: and(False(),False()) -> False() and(False(),True()) -> False() and(True(),False()) -> False() and(True(),True()) -> True() gcd[False][Ite](False(),x,y) -> gcd(x,monus(y,x)) gcd[False][Ite](True(),x,y) -> gcd(monus(x,y),y) gcd[Ite](False(),x,y) -> gcd[False][Ite](gt0(x,y),x,y) gcd[Ite](True(),x,y) -> x monus[Ite](False(),Cons(x',xs'),Cons(x,xs)) -> monus(xs',xs) monus[Ite](True(),Cons(x,xs),y) -> xs - Signature: {@/2,and/2,eqList/2,gcd/2,gcd[False][Ite]/3,gcd[Ite]/3,goal/2,gt0/2,lgth/1,monus/2,monus[Ite]/3} / {Cons/2 ,False/0,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {@,and,eqList,gcd,gcd[False][Ite],gcd[Ite],goal,gt0,lgth ,monus,monus[Ite]} and constructors {Cons,False,Nil,True} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: @(y,z){y -> Cons(x,y)} = @(Cons(x,y),z) ->^+ Cons(x,@(y,z)) = C[@(y,z) = @(y,z){}] WORST_CASE(Omega(n^1),?)