* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            @(Cons(x,xs),ys) -> Cons(x,@(xs,ys))
            @(Nil(),ys) -> ys
            equal(Capture(),Capture()) -> True()
            equal(Capture(),Swap()) -> False()
            equal(Swap(),Capture()) -> False()
            equal(Swap(),Swap()) -> True()
            game(p1,p2,Cons(Swap(),xs)) -> game(p2,p1,xs)
            game(p1,p2,Nil()) -> @(p1,p2)
            game(p1,Cons(x',xs'),Cons(Capture(),xs)) -> game(Cons(x',p1),xs',xs)
            goal(p1,p2,moves) -> game(p1,p2,moves)
        - Signature:
            {@/2,equal/2,game/3,goal/3} / {Capture/0,Cons/2,False/0,Nil/0,Swap/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {@,equal,game,goal} and constructors {Capture,Cons,False
            ,Nil,Swap,True}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            @(Cons(x,xs),ys) -> Cons(x,@(xs,ys))
            @(Nil(),ys) -> ys
            equal(Capture(),Capture()) -> True()
            equal(Capture(),Swap()) -> False()
            equal(Swap(),Capture()) -> False()
            equal(Swap(),Swap()) -> True()
            game(p1,p2,Cons(Swap(),xs)) -> game(p2,p1,xs)
            game(p1,p2,Nil()) -> @(p1,p2)
            game(p1,Cons(x',xs'),Cons(Capture(),xs)) -> game(Cons(x',p1),xs',xs)
            goal(p1,p2,moves) -> game(p1,p2,moves)
        - Signature:
            {@/2,equal/2,game/3,goal/3} / {Capture/0,Cons/2,False/0,Nil/0,Swap/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {@,equal,game,goal} and constructors {Capture,Cons,False
            ,Nil,Swap,True}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          @(y,z){y -> Cons(x,y)} =
            @(Cons(x,y),z) ->^+ Cons(x,@(y,z))
              = C[@(y,z) = @(y,z){}]

** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            @(Cons(x,xs),ys) -> Cons(x,@(xs,ys))
            @(Nil(),ys) -> ys
            equal(Capture(),Capture()) -> True()
            equal(Capture(),Swap()) -> False()
            equal(Swap(),Capture()) -> False()
            equal(Swap(),Swap()) -> True()
            game(p1,p2,Cons(Swap(),xs)) -> game(p2,p1,xs)
            game(p1,p2,Nil()) -> @(p1,p2)
            game(p1,Cons(x',xs'),Cons(Capture(),xs)) -> game(Cons(x',p1),xs',xs)
            goal(p1,p2,moves) -> game(p1,p2,moves)
        - Signature:
            {@/2,equal/2,game/3,goal/3} / {Capture/0,Cons/2,False/0,Nil/0,Swap/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {@,equal,game,goal} and constructors {Capture,Cons,False
            ,Nil,Swap,True}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 2.
        The enriched problem is compatible with follwoing automaton.
          @_0(2,2) -> 1
          @_1(2,2) -> 1
          @_1(2,2) -> 3
          @_2(2,2) -> 4
          Capture_0() -> 1
          Capture_0() -> 2
          Capture_0() -> 3
          Capture_0() -> 4
          Cons_0(2,2) -> 1
          Cons_0(2,2) -> 2
          Cons_0(2,2) -> 3
          Cons_0(2,2) -> 4
          Cons_1(2,2) -> 1
          Cons_1(2,2) -> 2
          Cons_1(2,2) -> 3
          Cons_1(2,2) -> 4
          Cons_1(2,3) -> 1
          Cons_1(2,3) -> 3
          Cons_1(2,3) -> 4
          Cons_2(2,4) -> 1
          Cons_2(2,4) -> 3
          Cons_2(2,4) -> 4
          False_0() -> 1
          False_0() -> 2
          False_0() -> 3
          False_0() -> 4
          False_1() -> 1
          Nil_0() -> 1
          Nil_0() -> 2
          Nil_0() -> 3
          Nil_0() -> 4
          Swap_0() -> 1
          Swap_0() -> 2
          Swap_0() -> 3
          Swap_0() -> 4
          True_0() -> 1
          True_0() -> 2
          True_0() -> 3
          True_0() -> 4
          True_1() -> 1
          equal_0(2,2) -> 1
          game_0(2,2,2) -> 1
          game_1(2,2,2) -> 1
          goal_0(2,2,2) -> 1
          2 -> 1
          2 -> 3
          2 -> 4
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            @(Cons(x,xs),ys) -> Cons(x,@(xs,ys))
            @(Nil(),ys) -> ys
            equal(Capture(),Capture()) -> True()
            equal(Capture(),Swap()) -> False()
            equal(Swap(),Capture()) -> False()
            equal(Swap(),Swap()) -> True()
            game(p1,p2,Cons(Swap(),xs)) -> game(p2,p1,xs)
            game(p1,p2,Nil()) -> @(p1,p2)
            game(p1,Cons(x',xs'),Cons(Capture(),xs)) -> game(Cons(x',p1),xs',xs)
            goal(p1,p2,moves) -> game(p1,p2,moves)
        - Signature:
            {@/2,equal/2,game/3,goal/3} / {Capture/0,Cons/2,False/0,Nil/0,Swap/0,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {@,equal,game,goal} and constructors {Capture,Cons,False
            ,Nil,Swap,True}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))