0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 188 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 12 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 399 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 142 ms)
↳24 CpxRNTS
↳25 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳26 CpxRNTS
↳27 IntTrsBoundProof (UPPER BOUND(ID), 36 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 28 ms)
↳30 CpxRNTS
↳31 FinalProof (⇔, 0 ms)
↳32 BOUNDS(1, n^1)
odd(Cons(x, xs)) → even(xs)
odd(Nil) → False
even(Cons(x, xs)) → odd(xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
even(Nil) → True
evenodd(x) → even(x)
odd(Cons(x, xs)) → even(xs) [1]
odd(Nil) → False [1]
even(Cons(x, xs)) → odd(xs) [1]
notEmpty(Cons(x, xs)) → True [1]
notEmpty(Nil) → False [1]
even(Nil) → True [1]
evenodd(x) → even(x) [1]
odd(Cons(x, xs)) → even(xs) [1]
odd(Nil) → False [1]
even(Cons(x, xs)) → odd(xs) [1]
notEmpty(Cons(x, xs)) → True [1]
notEmpty(Nil) → False [1]
even(Nil) → True [1]
evenodd(x) → even(x) [1]
odd :: Cons:Nil → False:True Cons :: a → Cons:Nil → Cons:Nil even :: Cons:Nil → False:True Nil :: Cons:Nil False :: False:True notEmpty :: Cons:Nil → False:True True :: False:True evenodd :: Cons:Nil → False:True |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
odd
even
notEmpty
evenodd
const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Nil => 0
False => 0
True => 1
const => 0
even(z) -{ 1 }→ odd(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
even(z) -{ 1 }→ 1 :|: z = 0
evenodd(z) -{ 1 }→ even(x) :|: x >= 0, z = x
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
odd(z) -{ 1 }→ even(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
odd(z) -{ 1 }→ 0 :|: z = 0
even(z) -{ 1 }→ odd(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
even(z) -{ 1 }→ 1 :|: z = 0
evenodd(z) -{ 1 }→ even(z) :|: z >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
odd(z) -{ 1 }→ even(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
odd(z) -{ 1 }→ 0 :|: z = 0
{ notEmpty } { even, odd } { evenodd } |
even(z) -{ 1 }→ odd(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
even(z) -{ 1 }→ 1 :|: z = 0
evenodd(z) -{ 1 }→ even(z) :|: z >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
odd(z) -{ 1 }→ even(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
odd(z) -{ 1 }→ 0 :|: z = 0
even(z) -{ 1 }→ odd(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
even(z) -{ 1 }→ 1 :|: z = 0
evenodd(z) -{ 1 }→ even(z) :|: z >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
odd(z) -{ 1 }→ even(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
odd(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: ?, size: O(1) [1] |
even(z) -{ 1 }→ odd(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
even(z) -{ 1 }→ 1 :|: z = 0
evenodd(z) -{ 1 }→ even(z) :|: z >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
odd(z) -{ 1 }→ even(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
odd(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: O(1) [1], size: O(1) [1] |
even(z) -{ 1 }→ odd(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
even(z) -{ 1 }→ 1 :|: z = 0
evenodd(z) -{ 1 }→ even(z) :|: z >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
odd(z) -{ 1 }→ even(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
odd(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: O(1) [1], size: O(1) [1] |
even(z) -{ 1 }→ odd(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
even(z) -{ 1 }→ 1 :|: z = 0
evenodd(z) -{ 1 }→ even(z) :|: z >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
odd(z) -{ 1 }→ even(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
odd(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: O(1) [1], size: O(1) [1] even: runtime: ?, size: O(1) [1] odd: runtime: ?, size: O(1) [1] |
even(z) -{ 1 }→ odd(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
even(z) -{ 1 }→ 1 :|: z = 0
evenodd(z) -{ 1 }→ even(z) :|: z >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
odd(z) -{ 1 }→ even(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
odd(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: O(1) [1], size: O(1) [1] even: runtime: O(n1) [2 + 2·z], size: O(1) [1] odd: runtime: O(n1) [1 + 2·z], size: O(1) [1] |
even(z) -{ 2 + 2·xs }→ s' :|: s' >= 0, s' <= 1, z = 1 + x + xs, xs >= 0, x >= 0
even(z) -{ 1 }→ 1 :|: z = 0
evenodd(z) -{ 3 + 2·z }→ s'' :|: s'' >= 0, s'' <= 1, z >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
odd(z) -{ 3 + 2·xs }→ s :|: s >= 0, s <= 1, z = 1 + x + xs, xs >= 0, x >= 0
odd(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: O(1) [1], size: O(1) [1] even: runtime: O(n1) [2 + 2·z], size: O(1) [1] odd: runtime: O(n1) [1 + 2·z], size: O(1) [1] |
even(z) -{ 2 + 2·xs }→ s' :|: s' >= 0, s' <= 1, z = 1 + x + xs, xs >= 0, x >= 0
even(z) -{ 1 }→ 1 :|: z = 0
evenodd(z) -{ 3 + 2·z }→ s'' :|: s'' >= 0, s'' <= 1, z >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
odd(z) -{ 3 + 2·xs }→ s :|: s >= 0, s <= 1, z = 1 + x + xs, xs >= 0, x >= 0
odd(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: O(1) [1], size: O(1) [1] even: runtime: O(n1) [2 + 2·z], size: O(1) [1] odd: runtime: O(n1) [1 + 2·z], size: O(1) [1] evenodd: runtime: ?, size: O(1) [1] |
even(z) -{ 2 + 2·xs }→ s' :|: s' >= 0, s' <= 1, z = 1 + x + xs, xs >= 0, x >= 0
even(z) -{ 1 }→ 1 :|: z = 0
evenodd(z) -{ 3 + 2·z }→ s'' :|: s'' >= 0, s'' <= 1, z >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
odd(z) -{ 3 + 2·xs }→ s :|: s >= 0, s <= 1, z = 1 + x + xs, xs >= 0, x >= 0
odd(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: O(1) [1], size: O(1) [1] even: runtime: O(n1) [2 + 2·z], size: O(1) [1] odd: runtime: O(n1) [1 + 2·z], size: O(1) [1] evenodd: runtime: O(n1) [3 + 2·z], size: O(1) [1] |