0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 370 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 74 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 182 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 79 ms)
↳24 CpxRNTS
↳25 FinalProof (⇔, 0 ms)
↳26 BOUNDS(1, n^1)
duplicate(Cons(x, xs)) → Cons(x, Cons(x, duplicate(xs)))
duplicate(Nil) → Nil
goal(x) → duplicate(x)
duplicate(Cons(x, xs)) → Cons(x, Cons(x, duplicate(xs))) [1]
duplicate(Nil) → Nil [1]
goal(x) → duplicate(x) [1]
duplicate(Cons(x, xs)) → Cons(x, Cons(x, duplicate(xs))) [1]
duplicate(Nil) → Nil [1]
goal(x) → duplicate(x) [1]
duplicate :: Cons:Nil → Cons:Nil Cons :: a → Cons:Nil → Cons:Nil Nil :: Cons:Nil goal :: Cons:Nil → Cons:Nil |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
duplicate
goal
const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Nil => 0
const => 0
duplicate(z) -{ 1 }→ 0 :|: z = 0
duplicate(z) -{ 1 }→ 1 + x + (1 + x + duplicate(xs)) :|: z = 1 + x + xs, xs >= 0, x >= 0
goal(z) -{ 1 }→ duplicate(x) :|: x >= 0, z = x
duplicate(z) -{ 1 }→ 0 :|: z = 0
duplicate(z) -{ 1 }→ 1 + x + (1 + x + duplicate(xs)) :|: z = 1 + x + xs, xs >= 0, x >= 0
goal(z) -{ 1 }→ duplicate(z) :|: z >= 0
{ duplicate } { goal } |
duplicate(z) -{ 1 }→ 0 :|: z = 0
duplicate(z) -{ 1 }→ 1 + x + (1 + x + duplicate(xs)) :|: z = 1 + x + xs, xs >= 0, x >= 0
goal(z) -{ 1 }→ duplicate(z) :|: z >= 0
duplicate(z) -{ 1 }→ 0 :|: z = 0
duplicate(z) -{ 1 }→ 1 + x + (1 + x + duplicate(xs)) :|: z = 1 + x + xs, xs >= 0, x >= 0
goal(z) -{ 1 }→ duplicate(z) :|: z >= 0
duplicate: runtime: ?, size: O(n1) [2·z] |
duplicate(z) -{ 1 }→ 0 :|: z = 0
duplicate(z) -{ 1 }→ 1 + x + (1 + x + duplicate(xs)) :|: z = 1 + x + xs, xs >= 0, x >= 0
goal(z) -{ 1 }→ duplicate(z) :|: z >= 0
duplicate: runtime: O(n1) [1 + z], size: O(n1) [2·z] |
duplicate(z) -{ 1 }→ 0 :|: z = 0
duplicate(z) -{ 2 + xs }→ 1 + x + (1 + x + s) :|: s >= 0, s <= 2 * xs, z = 1 + x + xs, xs >= 0, x >= 0
goal(z) -{ 2 + z }→ s' :|: s' >= 0, s' <= 2 * z, z >= 0
duplicate: runtime: O(n1) [1 + z], size: O(n1) [2·z] |
duplicate(z) -{ 1 }→ 0 :|: z = 0
duplicate(z) -{ 2 + xs }→ 1 + x + (1 + x + s) :|: s >= 0, s <= 2 * xs, z = 1 + x + xs, xs >= 0, x >= 0
goal(z) -{ 2 + z }→ s' :|: s' >= 0, s' <= 2 * z, z >= 0
duplicate: runtime: O(n1) [1 + z], size: O(n1) [2·z] goal: runtime: ?, size: O(n1) [2·z] |
duplicate(z) -{ 1 }→ 0 :|: z = 0
duplicate(z) -{ 2 + xs }→ 1 + x + (1 + x + s) :|: s >= 0, s <= 2 * xs, z = 1 + x + xs, xs >= 0, x >= 0
goal(z) -{ 2 + z }→ s' :|: s' >= 0, s' <= 2 * z, z >= 0
duplicate: runtime: O(n1) [1 + z], size: O(n1) [2·z] goal: runtime: O(n1) [2 + z], size: O(n1) [2·z] |