* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            @(Cons(x,xs),ys) -> Cons(x,@(xs,ys))
            @(Nil(),ys) -> ys
            binom(Cons(x,xs),Cons(x',xs')) -> @(binom(xs,xs'),binom(xs,Cons(x',xs')))
            binom(Cons(x,xs),Nil()) -> Cons(Nil(),Nil())
            binom(Nil(),k) -> Cons(Nil(),Nil())
            goal(x,y) -> binom(x,y)
        - Signature:
            {@/2,binom/2,goal/2} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {@,binom,goal} and constructors {Cons,Nil}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            @(Cons(x,xs),ys) -> Cons(x,@(xs,ys))
            @(Nil(),ys) -> ys
            binom(Cons(x,xs),Cons(x',xs')) -> @(binom(xs,xs'),binom(xs,Cons(x',xs')))
            binom(Cons(x,xs),Nil()) -> Cons(Nil(),Nil())
            binom(Nil(),k) -> Cons(Nil(),Nil())
            goal(x,y) -> binom(x,y)
        - Signature:
            {@/2,binom/2,goal/2} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {@,binom,goal} and constructors {Cons,Nil}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          @(y,z){y -> Cons(x,y)} =
            @(Cons(x,y),z) ->^+ Cons(x,@(y,z))
              = C[@(y,z) = @(y,z){}]

WORST_CASE(Omega(n^1),?)