* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
@(Cons(x,xs),ys) -> Cons(x,@(xs,ys))
@(Nil(),ys) -> ys
binom(Cons(x,xs),Cons(x',xs')) -> @(binom(xs,xs'),binom(xs,Cons(x',xs')))
binom(Cons(x,xs),Nil()) -> Cons(Nil(),Nil())
binom(Nil(),k) -> Cons(Nil(),Nil())
goal(x,y) -> binom(x,y)
- Signature:
{@/2,binom/2,goal/2} / {Cons/2,Nil/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {@,binom,goal} and constructors {Cons,Nil}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
@(Cons(x,xs),ys) -> Cons(x,@(xs,ys))
@(Nil(),ys) -> ys
binom(Cons(x,xs),Cons(x',xs')) -> @(binom(xs,xs'),binom(xs,Cons(x',xs')))
binom(Cons(x,xs),Nil()) -> Cons(Nil(),Nil())
binom(Nil(),k) -> Cons(Nil(),Nil())
goal(x,y) -> binom(x,y)
- Signature:
{@/2,binom/2,goal/2} / {Cons/2,Nil/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {@,binom,goal} and constructors {Cons,Nil}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
@(y,z){y -> Cons(x,y)} =
@(Cons(x,y),z) ->^+ Cons(x,@(y,z))
= C[@(y,z) = @(y,z){}]
WORST_CASE(Omega(n^1),?)