* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: badd(x,Nil()) -> x badd(x',Cons(x,xs)) -> badd(Cons(Nil(),Nil()),badd(x',xs)) goal(x,y) -> badd(x,y) - Signature: {badd/2,goal/2} / {Cons/2,Nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {badd,goal} and constructors {Cons,Nil} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: badd(x,Nil()) -> x badd(x',Cons(x,xs)) -> badd(Cons(Nil(),Nil()),badd(x',xs)) goal(x,y) -> badd(x,y) - Signature: {badd/2,goal/2} / {Cons/2,Nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {badd,goal} and constructors {Cons,Nil} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: badd(x,z){z -> Cons(y,z)} = badd(x,Cons(y,z)) ->^+ badd(Cons(Nil(),Nil()),badd(x,z)) = C[badd(x,z) = badd(x,z){}] WORST_CASE(Omega(n^1),?)