* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
badd(x,Nil()) -> x
badd(x',Cons(x,xs)) -> badd(Cons(Nil(),Nil()),badd(x',xs))
goal(x,y) -> badd(x,y)
- Signature:
{badd/2,goal/2} / {Cons/2,Nil/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {badd,goal} and constructors {Cons,Nil}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
badd(x,Nil()) -> x
badd(x',Cons(x,xs)) -> badd(Cons(Nil(),Nil()),badd(x',xs))
goal(x,y) -> badd(x,y)
- Signature:
{badd/2,goal/2} / {Cons/2,Nil/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {badd,goal} and constructors {Cons,Nil}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
badd(x,z){z -> Cons(y,z)} =
badd(x,Cons(y,z)) ->^+ badd(Cons(Nil(),Nil()),badd(x,z))
= C[badd(x,z) = badd(x,z){}]
WORST_CASE(Omega(n^1),?)