* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            badd(x,Nil()) -> x
            badd(x',Cons(x,xs)) -> badd(Cons(Nil(),Nil()),badd(x',xs))
            goal(x,y) -> badd(x,y)
        - Signature:
            {badd/2,goal/2} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {badd,goal} and constructors {Cons,Nil}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            badd(x,Nil()) -> x
            badd(x',Cons(x,xs)) -> badd(Cons(Nil(),Nil()),badd(x',xs))
            goal(x,y) -> badd(x,y)
        - Signature:
            {badd/2,goal/2} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {badd,goal} and constructors {Cons,Nil}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          badd(x,z){z -> Cons(y,z)} =
            badd(x,Cons(y,z)) ->^+ badd(Cons(Nil(),Nil()),badd(x,z))
              = C[badd(x,z) = badd(x,z){}]

WORST_CASE(Omega(n^1),?)