(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
addlist(Cons(x, xs'), Cons(S(0), xs)) → Cons(S(x), addlist(xs', xs))
addlist(Cons(S(0), xs'), Cons(x, xs)) → Cons(S(x), addlist(xs', xs))
addlist(Nil, ys) → Nil
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs, ys) → addlist(xs, ys)
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3]
transitions:
Cons0(0, 0) → 0
S0(0) → 0
00() → 0
Nil0() → 0
True0() → 0
False0() → 0
addlist0(0, 0) → 1
notEmpty0(0) → 2
goal0(0, 0) → 3
S1(0) → 4
addlist1(0, 0) → 5
Cons1(4, 5) → 1
Nil1() → 1
True1() → 2
False1() → 2
addlist1(0, 0) → 3
Cons1(4, 5) → 3
Cons1(4, 5) → 5
Nil1() → 3
Nil1() → 5
(2) BOUNDS(1, n^1)
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
addlist(Cons(z0, z1), Cons(S(0), z2)) → Cons(S(z0), addlist(z1, z2))
addlist(Cons(S(0), z0), Cons(z1, z2)) → Cons(S(z1), addlist(z0, z2))
addlist(Nil, z0) → Nil
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0, z1) → addlist(z0, z1)
Tuples:
ADDLIST(Cons(z0, z1), Cons(S(0), z2)) → c(ADDLIST(z1, z2))
ADDLIST(Cons(S(0), z0), Cons(z1, z2)) → c1(ADDLIST(z0, z2))
ADDLIST(Nil, z0) → c2
NOTEMPTY(Cons(z0, z1)) → c3
NOTEMPTY(Nil) → c4
GOAL(z0, z1) → c5(ADDLIST(z0, z1))
S tuples:
ADDLIST(Cons(z0, z1), Cons(S(0), z2)) → c(ADDLIST(z1, z2))
ADDLIST(Cons(S(0), z0), Cons(z1, z2)) → c1(ADDLIST(z0, z2))
ADDLIST(Nil, z0) → c2
NOTEMPTY(Cons(z0, z1)) → c3
NOTEMPTY(Nil) → c4
GOAL(z0, z1) → c5(ADDLIST(z0, z1))
K tuples:none
Defined Rule Symbols:
addlist, notEmpty, goal
Defined Pair Symbols:
ADDLIST, NOTEMPTY, GOAL
Compound Symbols:
c, c1, c2, c3, c4, c5
(5) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
GOAL(z0, z1) → c5(ADDLIST(z0, z1))
Removed 3 trailing nodes:
NOTEMPTY(Cons(z0, z1)) → c3
NOTEMPTY(Nil) → c4
ADDLIST(Nil, z0) → c2
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
addlist(Cons(z0, z1), Cons(S(0), z2)) → Cons(S(z0), addlist(z1, z2))
addlist(Cons(S(0), z0), Cons(z1, z2)) → Cons(S(z1), addlist(z0, z2))
addlist(Nil, z0) → Nil
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0, z1) → addlist(z0, z1)
Tuples:
ADDLIST(Cons(z0, z1), Cons(S(0), z2)) → c(ADDLIST(z1, z2))
ADDLIST(Cons(S(0), z0), Cons(z1, z2)) → c1(ADDLIST(z0, z2))
S tuples:
ADDLIST(Cons(z0, z1), Cons(S(0), z2)) → c(ADDLIST(z1, z2))
ADDLIST(Cons(S(0), z0), Cons(z1, z2)) → c1(ADDLIST(z0, z2))
K tuples:none
Defined Rule Symbols:
addlist, notEmpty, goal
Defined Pair Symbols:
ADDLIST
Compound Symbols:
c, c1
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
addlist(Cons(z0, z1), Cons(S(0), z2)) → Cons(S(z0), addlist(z1, z2))
addlist(Cons(S(0), z0), Cons(z1, z2)) → Cons(S(z1), addlist(z0, z2))
addlist(Nil, z0) → Nil
notEmpty(Cons(z0, z1)) → True
notEmpty(Nil) → False
goal(z0, z1) → addlist(z0, z1)
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ADDLIST(Cons(z0, z1), Cons(S(0), z2)) → c(ADDLIST(z1, z2))
ADDLIST(Cons(S(0), z0), Cons(z1, z2)) → c1(ADDLIST(z0, z2))
S tuples:
ADDLIST(Cons(z0, z1), Cons(S(0), z2)) → c(ADDLIST(z1, z2))
ADDLIST(Cons(S(0), z0), Cons(z1, z2)) → c1(ADDLIST(z0, z2))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
ADDLIST
Compound Symbols:
c, c1
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ADDLIST(Cons(z0, z1), Cons(S(0), z2)) → c(ADDLIST(z1, z2))
ADDLIST(Cons(S(0), z0), Cons(z1, z2)) → c1(ADDLIST(z0, z2))
We considered the (Usable) Rules:none
And the Tuples:
ADDLIST(Cons(z0, z1), Cons(S(0), z2)) → c(ADDLIST(z1, z2))
ADDLIST(Cons(S(0), z0), Cons(z1, z2)) → c1(ADDLIST(z0, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [3]
POL(ADDLIST(x1, x2)) = x1 + x2
POL(Cons(x1, x2)) = [1] + x1 + x2
POL(S(x1)) = [3] + x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
ADDLIST(Cons(z0, z1), Cons(S(0), z2)) → c(ADDLIST(z1, z2))
ADDLIST(Cons(S(0), z0), Cons(z1, z2)) → c1(ADDLIST(z0, z2))
S tuples:none
K tuples:
ADDLIST(Cons(z0, z1), Cons(S(0), z2)) → c(ADDLIST(z1, z2))
ADDLIST(Cons(S(0), z0), Cons(z1, z2)) → c1(ADDLIST(z0, z2))
Defined Rule Symbols:none
Defined Pair Symbols:
ADDLIST
Compound Symbols:
c, c1
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(1, 1)