0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 360 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 124 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 131 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 69 ms)
↳24 CpxRNTS
↳25 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳26 CpxRNTS
↳27 IntTrsBoundProof (UPPER BOUND(ID), 222 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 80 ms)
↳30 CpxRNTS
↳31 FinalProof (⇔, 0 ms)
↳32 BOUNDS(1, n^1)
add0(x', Cons(x, xs)) → add0(Cons(Cons(Nil, Nil), x'), xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
add0(x, Nil) → x
goal(x, y) → add0(x, y)
add0(x', Cons(x, xs)) → add0(Cons(Cons(Nil, Nil), x'), xs) [1]
notEmpty(Cons(x, xs)) → True [1]
notEmpty(Nil) → False [1]
add0(x, Nil) → x [1]
goal(x, y) → add0(x, y) [1]
add0(x', Cons(x, xs)) → add0(Cons(Cons(Nil, Nil), x'), xs) [1]
notEmpty(Cons(x, xs)) → True [1]
notEmpty(Nil) → False [1]
add0(x, Nil) → x [1]
goal(x, y) → add0(x, y) [1]
add0 :: Cons:Nil → Cons:Nil → Cons:Nil Cons :: Cons:Nil → Cons:Nil → Cons:Nil Nil :: Cons:Nil notEmpty :: Cons:Nil → True:False True :: True:False False :: True:False goal :: Cons:Nil → Cons:Nil → Cons:Nil |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
add0
notEmpty
goal
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Nil => 0
True => 1
False => 0
add0(z, z') -{ 1 }→ x :|: x >= 0, z = x, z' = 0
add0(z, z') -{ 1 }→ add0(1 + (1 + 0 + 0) + x', xs) :|: xs >= 0, z' = 1 + x + xs, x' >= 0, x >= 0, z = x'
goal(z, z') -{ 1 }→ add0(x, y) :|: x >= 0, y >= 0, z = x, z' = y
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
add0(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
add0(z, z') -{ 1 }→ add0(1 + (1 + 0 + 0) + z, xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0
goal(z, z') -{ 1 }→ add0(z, z') :|: z >= 0, z' >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
{ add0 } { notEmpty } { goal } |
add0(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
add0(z, z') -{ 1 }→ add0(1 + (1 + 0 + 0) + z, xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0
goal(z, z') -{ 1 }→ add0(z, z') :|: z >= 0, z' >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
add0(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
add0(z, z') -{ 1 }→ add0(1 + (1 + 0 + 0) + z, xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0
goal(z, z') -{ 1 }→ add0(z, z') :|: z >= 0, z' >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
add0: runtime: ?, size: O(n1) [z + 2·z'] |
add0(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
add0(z, z') -{ 1 }→ add0(1 + (1 + 0 + 0) + z, xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0
goal(z, z') -{ 1 }→ add0(z, z') :|: z >= 0, z' >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
add0: runtime: O(n1) [1 + z'], size: O(n1) [z + 2·z'] |
add0(z, z') -{ 2 + xs }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0 + 0) + z) + 2 * xs, xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0
add0(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
goal(z, z') -{ 2 + z' }→ s' :|: s' >= 0, s' <= 1 * z + 2 * z', z >= 0, z' >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
add0: runtime: O(n1) [1 + z'], size: O(n1) [z + 2·z'] |
add0(z, z') -{ 2 + xs }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0 + 0) + z) + 2 * xs, xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0
add0(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
goal(z, z') -{ 2 + z' }→ s' :|: s' >= 0, s' <= 1 * z + 2 * z', z >= 0, z' >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
add0: runtime: O(n1) [1 + z'], size: O(n1) [z + 2·z'] notEmpty: runtime: ?, size: O(1) [1] |
add0(z, z') -{ 2 + xs }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0 + 0) + z) + 2 * xs, xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0
add0(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
goal(z, z') -{ 2 + z' }→ s' :|: s' >= 0, s' <= 1 * z + 2 * z', z >= 0, z' >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
add0: runtime: O(n1) [1 + z'], size: O(n1) [z + 2·z'] notEmpty: runtime: O(1) [1], size: O(1) [1] |
add0(z, z') -{ 2 + xs }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0 + 0) + z) + 2 * xs, xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0
add0(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
goal(z, z') -{ 2 + z' }→ s' :|: s' >= 0, s' <= 1 * z + 2 * z', z >= 0, z' >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
add0: runtime: O(n1) [1 + z'], size: O(n1) [z + 2·z'] notEmpty: runtime: O(1) [1], size: O(1) [1] |
add0(z, z') -{ 2 + xs }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0 + 0) + z) + 2 * xs, xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0
add0(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
goal(z, z') -{ 2 + z' }→ s' :|: s' >= 0, s' <= 1 * z + 2 * z', z >= 0, z' >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
add0: runtime: O(n1) [1 + z'], size: O(n1) [z + 2·z'] notEmpty: runtime: O(1) [1], size: O(1) [1] goal: runtime: ?, size: O(n1) [z + 2·z'] |
add0(z, z') -{ 2 + xs }→ s :|: s >= 0, s <= 1 * (1 + (1 + 0 + 0) + z) + 2 * xs, xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0
add0(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
goal(z, z') -{ 2 + z' }→ s' :|: s' >= 0, s' <= 1 * z + 2 * z', z >= 0, z' >= 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
add0: runtime: O(n1) [1 + z'], size: O(n1) [z + 2·z'] notEmpty: runtime: O(1) [1], size: O(1) [1] goal: runtime: O(n1) [2 + z'], size: O(n1) [z + 2·z'] |