* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            ack(Cons(x,xs),Nil()) -> ack(xs,Cons(Nil(),Nil()))
            ack(Cons(x',xs'),Cons(x,xs)) -> ack(xs',ack(Cons(x',xs'),xs))
            ack(Nil(),n) -> Cons(Cons(Nil(),Nil()),n)
            goal(m,n) -> ack(m,n)
        - Signature:
            {ack/2,goal/2} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {ack,goal} and constructors {Cons,Nil}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            ack(Cons(x,xs),Nil()) -> ack(xs,Cons(Nil(),Nil()))
            ack(Cons(x',xs'),Cons(x,xs)) -> ack(xs',ack(Cons(x',xs'),xs))
            ack(Nil(),n) -> Cons(Cons(Nil(),Nil()),n)
            goal(m,n) -> ack(m,n)
        - Signature:
            {ack/2,goal/2} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {ack,goal} and constructors {Cons,Nil}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          ack(Cons(x,y),u){u -> Cons(z,u)} =
            ack(Cons(x,y),Cons(z,u)) ->^+ ack(y,ack(Cons(x,y),u))
              = C[ack(Cons(x,y),u) = ack(Cons(x,y),u){}]

WORST_CASE(Omega(n^1),?)