* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            d(z,g(x,y)) -> g(e(x),d(z,y))
            d(z,g(0(),0())) -> e(0())
            d(c(z),g(g(x,y),0())) -> g(d(c(z),g(x,y)),d(z,g(x,y)))
            g(e(x),e(y)) -> e(g(x,y))
            h(z,e(x)) -> h(c(z),d(z,x))
        - Signature:
            {d/2,g/2,h/2} / {0/0,c/1,e/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {d,g,h} and constructors {0,c,e}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            d(z,g(x,y)) -> g(e(x),d(z,y))
            d(z,g(0(),0())) -> e(0())
            d(c(z),g(g(x,y),0())) -> g(d(c(z),g(x,y)),d(z,g(x,y)))
            g(e(x),e(y)) -> e(g(x,y))
            h(z,e(x)) -> h(c(z),d(z,x))
        - Signature:
            {d/2,g/2,h/2} / {0/0,c/1,e/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {d,g,h} and constructors {0,c,e}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          g(x,y){x -> e(x),y -> e(y)} =
            g(e(x),e(y)) ->^+ e(g(x,y))
              = C[g(x,y) = g(x,y){}]

WORST_CASE(Omega(n^1),?)