* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            and(x,or(y,z)) -> or(and(x,y),and(x,z))
            and(or(y,z),x) -> or(and(x,y),and(x,z))
            not(and(x,y)) -> or(not(x),not(y))
            not(not(x)) -> x
            not(or(x,y)) -> and(not(x),not(y))
        - Signature:
            {and/2,not/1} / {or/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {and,not} and constructors {or}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            and(x,or(y,z)) -> or(and(x,y),and(x,z))
            and(or(y,z),x) -> or(and(x,y),and(x,z))
            not(and(x,y)) -> or(not(x),not(y))
            not(not(x)) -> x
            not(or(x,y)) -> and(not(x),not(y))
        - Signature:
            {and/2,not/1} / {or/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {and,not} and constructors {or}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          and(x,y){y -> or(y,z)} =
            and(x,or(y,z)) ->^+ or(and(x,y),and(x,z))
              = C[and(x,y) = and(x,y){}]

WORST_CASE(Omega(n^1),?)