* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            D(*(x,y)) -> +(*(y,D(x)),*(x,D(y)))
            D(+(x,y)) -> +(D(x),D(y))
            D(-(x,y)) -> -(D(x),D(y))
            D(constant()) -> 0()
            D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2())))
            D(ln(x)) -> div(D(x),x)
            D(minus(x)) -> minus(D(x))
            D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
            D(t()) -> 1()
        - Signature:
            {D/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            D(*(x,y)) -> +(*(y,D(x)),*(x,D(y)))
            D(+(x,y)) -> +(D(x),D(y))
            D(-(x,y)) -> -(D(x),D(y))
            D(constant()) -> 0()
            D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2())))
            D(ln(x)) -> div(D(x),x)
            D(minus(x)) -> minus(D(x))
            D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
            D(t()) -> 1()
        - Signature:
            {D/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          D(x){x -> *(x,y)} =
            D(*(x,y)) ->^+ +(*(y,D(x)),*(x,D(y)))
              = C[D(x) = D(x){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            D(*(x,y)) -> +(*(y,D(x)),*(x,D(y)))
            D(+(x,y)) -> +(D(x),D(y))
            D(-(x,y)) -> -(D(x),D(y))
            D(constant()) -> 0()
            D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2())))
            D(ln(x)) -> div(D(x),x)
            D(minus(x)) -> minus(D(x))
            D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
            D(t()) -> 1()
        - Signature:
            {D/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        DependencyPairs {dpKind_ = WIDP}
    + Details:
        We add the following weak innermost dependency pairs:
        
        Strict DPs
          D#(*(x,y)) -> c_1(D#(x),D#(y))
          D#(+(x,y)) -> c_2(D#(x),D#(y))
          D#(-(x,y)) -> c_3(D#(x),D#(y))
          D#(constant()) -> c_4()
          D#(div(x,y)) -> c_5(D#(x),D#(y))
          D#(ln(x)) -> c_6(D#(x))
          D#(minus(x)) -> c_7(D#(x))
          D#(pow(x,y)) -> c_8(D#(x),D#(y))
          D#(t()) -> c_9()
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(constant()) -> c_4()
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
            D#(t()) -> c_9()
        - Strict TRS:
            D(*(x,y)) -> +(*(y,D(x)),*(x,D(y)))
            D(+(x,y)) -> +(D(x),D(y))
            D(-(x,y)) -> -(D(x),D(y))
            D(constant()) -> 0()
            D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2())))
            D(ln(x)) -> div(D(x),x)
            D(minus(x)) -> minus(D(x))
            D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y)))
            D(t()) -> 1()
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          D#(*(x,y)) -> c_1(D#(x),D#(y))
          D#(+(x,y)) -> c_2(D#(x),D#(y))
          D#(-(x,y)) -> c_3(D#(x),D#(y))
          D#(constant()) -> c_4()
          D#(div(x,y)) -> c_5(D#(x),D#(y))
          D#(ln(x)) -> c_6(D#(x))
          D#(minus(x)) -> c_7(D#(x))
          D#(pow(x,y)) -> c_8(D#(x),D#(y))
          D#(t()) -> c_9()
** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(constant()) -> c_4()
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
            D#(t()) -> c_9()
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {4,9}
        by application of
          Pre({4,9}) = {1,2,3,5,6,7,8}.
        Here rules are labelled as follows:
          1: D#(*(x,y)) -> c_1(D#(x),D#(y))
          2: D#(+(x,y)) -> c_2(D#(x),D#(y))
          3: D#(-(x,y)) -> c_3(D#(x),D#(y))
          4: D#(constant()) -> c_4()
          5: D#(div(x,y)) -> c_5(D#(x),D#(y))
          6: D#(ln(x)) -> c_6(D#(x))
          7: D#(minus(x)) -> c_7(D#(x))
          8: D#(pow(x,y)) -> c_8(D#(x),D#(y))
          9: D#(t()) -> c_9()
** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Weak DPs:
            D#(constant()) -> c_4()
            D#(t()) -> c_9()
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:D#(*(x,y)) -> c_1(D#(x),D#(y))
             -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_2 D#(minus(x)) -> c_7(D#(x)):6
             -->_1 D#(minus(x)) -> c_7(D#(x)):6
             -->_2 D#(ln(x)) -> c_6(D#(x)):5
             -->_1 D#(ln(x)) -> c_6(D#(x)):5
             -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_2 D#(t()) -> c_9():9
             -->_1 D#(t()) -> c_9():9
             -->_2 D#(constant()) -> c_4():8
             -->_1 D#(constant()) -> c_4():8
             -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
             -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
          
          2:S:D#(+(x,y)) -> c_2(D#(x),D#(y))
             -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_2 D#(minus(x)) -> c_7(D#(x)):6
             -->_1 D#(minus(x)) -> c_7(D#(x)):6
             -->_2 D#(ln(x)) -> c_6(D#(x)):5
             -->_1 D#(ln(x)) -> c_6(D#(x)):5
             -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_2 D#(t()) -> c_9():9
             -->_1 D#(t()) -> c_9():9
             -->_2 D#(constant()) -> c_4():8
             -->_1 D#(constant()) -> c_4():8
             -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
             -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
          
          3:S:D#(-(x,y)) -> c_3(D#(x),D#(y))
             -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_2 D#(minus(x)) -> c_7(D#(x)):6
             -->_1 D#(minus(x)) -> c_7(D#(x)):6
             -->_2 D#(ln(x)) -> c_6(D#(x)):5
             -->_1 D#(ln(x)) -> c_6(D#(x)):5
             -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_2 D#(t()) -> c_9():9
             -->_1 D#(t()) -> c_9():9
             -->_2 D#(constant()) -> c_4():8
             -->_1 D#(constant()) -> c_4():8
             -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
             -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
          
          4:S:D#(div(x,y)) -> c_5(D#(x),D#(y))
             -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_2 D#(minus(x)) -> c_7(D#(x)):6
             -->_1 D#(minus(x)) -> c_7(D#(x)):6
             -->_2 D#(ln(x)) -> c_6(D#(x)):5
             -->_1 D#(ln(x)) -> c_6(D#(x)):5
             -->_2 D#(t()) -> c_9():9
             -->_1 D#(t()) -> c_9():9
             -->_2 D#(constant()) -> c_4():8
             -->_1 D#(constant()) -> c_4():8
             -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
             -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
          
          5:S:D#(ln(x)) -> c_6(D#(x))
             -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_1 D#(minus(x)) -> c_7(D#(x)):6
             -->_1 D#(t()) -> c_9():9
             -->_1 D#(constant()) -> c_4():8
             -->_1 D#(ln(x)) -> c_6(D#(x)):5
             -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
          
          6:S:D#(minus(x)) -> c_7(D#(x))
             -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_1 D#(t()) -> c_9():9
             -->_1 D#(constant()) -> c_4():8
             -->_1 D#(minus(x)) -> c_7(D#(x)):6
             -->_1 D#(ln(x)) -> c_6(D#(x)):5
             -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
          
          7:S:D#(pow(x,y)) -> c_8(D#(x),D#(y))
             -->_2 D#(t()) -> c_9():9
             -->_1 D#(t()) -> c_9():9
             -->_2 D#(constant()) -> c_4():8
             -->_1 D#(constant()) -> c_4():8
             -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_2 D#(minus(x)) -> c_7(D#(x)):6
             -->_1 D#(minus(x)) -> c_7(D#(x)):6
             -->_2 D#(ln(x)) -> c_6(D#(x)):5
             -->_1 D#(ln(x)) -> c_6(D#(x)):5
             -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
             -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
          
          8:W:D#(constant()) -> c_4()
             
          
          9:W:D#(t()) -> c_9()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          8: D#(constant()) -> c_4()
          9: D#(t()) -> c_9()
** Step 1.b:5: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          3: D#(-(x,y)) -> c_3(D#(x),D#(y))
          
        The strictly oriented rules are moved into the weak component.
*** Step 1.b:5.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1,2},
          uargs(c_3) = {1,2},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1,2}
        
        Following symbols are considered usable:
          {D#}
        TcT has computed the following interpretation:
                 p(*) = [1] x1 + [1] x2 + [0]
                 p(+) = [1] x1 + [1] x2 + [0]
                 p(-) = [1] x1 + [1] x2 + [2]
                 p(0) = [2]                  
                 p(1) = [0]                  
                 p(2) = [2]                  
                 p(D) = [0]                  
          p(constant) = [1]                  
               p(div) = [1] x1 + [1] x2 + [0]
                p(ln) = [1] x1 + [0]         
             p(minus) = [1] x1 + [0]         
               p(pow) = [1] x1 + [1] x2 + [0]
                 p(t) = [0]                  
                p(D#) = [1] x1 + [0]         
               p(c_1) = [1] x1 + [1] x2 + [0]
               p(c_2) = [1] x1 + [1] x2 + [0]
               p(c_3) = [1] x1 + [1] x2 + [0]
               p(c_4) = [1]                  
               p(c_5) = [1] x1 + [1] x2 + [0]
               p(c_6) = [1] x1 + [0]         
               p(c_7) = [1] x1 + [0]         
               p(c_8) = [1] x1 + [1] x2 + [0]
               p(c_9) = [0]                  
        
        Following rules are strictly oriented:
        D#(-(x,y)) = [1] x + [1] y + [2]
                   > [1] x + [1] y + [0]
                   = c_3(D#(x),D#(y))   
        
        
        Following rules are (at-least) weakly oriented:
          D#(*(x,y)) =  [1] x + [1] y + [0]
                     >= [1] x + [1] y + [0]
                     =  c_1(D#(x),D#(y))   
        
          D#(+(x,y)) =  [1] x + [1] y + [0]
                     >= [1] x + [1] y + [0]
                     =  c_2(D#(x),D#(y))   
        
        D#(div(x,y)) =  [1] x + [1] y + [0]
                     >= [1] x + [1] y + [0]
                     =  c_5(D#(x),D#(y))   
        
           D#(ln(x)) =  [1] x + [0]        
                     >= [1] x + [0]        
                     =  c_6(D#(x))         
        
        D#(minus(x)) =  [1] x + [0]        
                     >= [1] x + [0]        
                     =  c_7(D#(x))         
        
        D#(pow(x,y)) =  [1] x + [1] y + [0]
                     >= [1] x + [1] y + [0]
                     =  c_8(D#(x),D#(y))   
        
*** Step 1.b:5.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Weak DPs:
            D#(-(x,y)) -> c_3(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 1.b:5.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Weak DPs:
            D#(-(x,y)) -> c_3(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: D#(+(x,y)) -> c_2(D#(x),D#(y))
          6: D#(pow(x,y)) -> c_8(D#(x),D#(y))
          
        The strictly oriented rules are moved into the weak component.
**** Step 1.b:5.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Weak DPs:
            D#(-(x,y)) -> c_3(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1,2},
          uargs(c_3) = {1,2},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1,2}
        
        Following symbols are considered usable:
          {D#}
        TcT has computed the following interpretation:
                 p(*) = [1 2] x1 + [1 5] x2 + [0]
                        [0 0]      [0 0]      [0]
                 p(+) = [1 6] x1 + [1 2] x2 + [5]
                        [0 0]      [0 0]      [4]
                 p(-) = [1 6] x1 + [1 2] x2 + [0]
                        [0 0]      [0 0]      [5]
                 p(0) = [0]                      
                        [2]                      
                 p(1) = [0]                      
                        [1]                      
                 p(2) = [0]                      
                        [0]                      
                 p(D) = [1 2] x1 + [0]           
                        [4 2]      [0]           
          p(constant) = [2]                      
                        [0]                      
               p(div) = [1 2] x1 + [1 3] x2 + [0]
                        [0 0]      [0 0]      [0]
                p(ln) = [1 4] x1 + [1]           
                        [0 0]      [1]           
             p(minus) = [1 4] x1 + [1]           
                        [0 0]      [1]           
               p(pow) = [1 2] x1 + [1 4] x2 + [0]
                        [0 0]      [0 0]      [3]
                 p(t) = [0]                      
                        [0]                      
                p(D#) = [1 2] x1 + [0]           
                        [0 2]      [3]           
               p(c_1) = [1 0] x1 + [1 0] x2 + [0]
                        [0 0]      [0 0]      [3]
               p(c_2) = [1 2] x1 + [1 0] x2 + [0]
                        [0 0]      [0 0]      [0]
               p(c_3) = [1 2] x1 + [1 0] x2 + [4]
                        [0 0]      [0 0]      [0]
               p(c_4) = [0]                      
                        [2]                      
               p(c_5) = [1 0] x1 + [1 0] x2 + [0]
                        [0 0]      [0 0]      [3]
               p(c_6) = [1 1] x1 + [0]           
                        [0 0]      [1]           
               p(c_7) = [1 1] x1 + [0]           
                        [0 0]      [4]           
               p(c_8) = [1 0] x1 + [1 1] x2 + [2]
                        [0 0]      [0 0]      [5]
               p(c_9) = [1]                      
                        [0]                      
        
        Following rules are strictly oriented:
          D#(+(x,y)) = [1 6] x + [1 2] y + [13]
                       [0 0]     [0 0]     [11]
                     > [1 6] x + [1 2] y + [6] 
                       [0 0]     [0 0]     [0] 
                     = c_2(D#(x),D#(y))        
        
        D#(pow(x,y)) = [1 2] x + [1 4] y + [6] 
                       [0 0]     [0 0]     [9] 
                     > [1 2] x + [1 4] y + [5] 
                       [0 0]     [0 0]     [5] 
                     = c_8(D#(x),D#(y))        
        
        
        Following rules are (at-least) weakly oriented:
          D#(*(x,y)) =  [1 2] x + [1 5] y + [0] 
                        [0 0]     [0 0]     [3] 
                     >= [1 2] x + [1 2] y + [0] 
                        [0 0]     [0 0]     [3] 
                     =  c_1(D#(x),D#(y))        
        
          D#(-(x,y)) =  [1 6] x + [1 2] y + [10]
                        [0 0]     [0 0]     [13]
                     >= [1 6] x + [1 2] y + [10]
                        [0 0]     [0 0]     [0] 
                     =  c_3(D#(x),D#(y))        
        
        D#(div(x,y)) =  [1 2] x + [1 3] y + [0] 
                        [0 0]     [0 0]     [3] 
                     >= [1 2] x + [1 2] y + [0] 
                        [0 0]     [0 0]     [3] 
                     =  c_5(D#(x),D#(y))        
        
           D#(ln(x)) =  [1 4] x + [3]           
                        [0 0]     [5]           
                     >= [1 4] x + [3]           
                        [0 0]     [1]           
                     =  c_6(D#(x))              
        
        D#(minus(x)) =  [1 4] x + [3]           
                        [0 0]     [5]           
                     >= [1 4] x + [3]           
                        [0 0]     [4]           
                     =  c_7(D#(x))              
        
**** Step 1.b:5.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
        - Weak DPs:
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:5.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
        - Weak DPs:
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: D#(*(x,y)) -> c_1(D#(x),D#(y))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:5.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
        - Weak DPs:
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1,2},
          uargs(c_3) = {1,2},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1,2}
        
        Following symbols are considered usable:
          {D#}
        TcT has computed the following interpretation:
                 p(*) = [1] x1 + [1] x2 + [2] 
                 p(+) = [1] x1 + [1] x2 + [0] 
                 p(-) = [1] x1 + [1] x2 + [3] 
                 p(0) = [1]                   
                 p(1) = [0]                   
                 p(2) = [2]                   
                 p(D) = [2] x1 + [0]          
          p(constant) = [1]                   
               p(div) = [1] x1 + [1] x2 + [0] 
                p(ln) = [1] x1 + [0]          
             p(minus) = [1] x1 + [0]          
               p(pow) = [1] x1 + [1] x2 + [2] 
                 p(t) = [2]                   
                p(D#) = [8] x1 + [0]          
               p(c_1) = [1] x1 + [1] x2 + [4] 
               p(c_2) = [1] x1 + [1] x2 + [0] 
               p(c_3) = [1] x1 + [1] x2 + [10]
               p(c_4) = [1]                   
               p(c_5) = [1] x1 + [1] x2 + [0] 
               p(c_6) = [1] x1 + [0]          
               p(c_7) = [1] x1 + [0]          
               p(c_8) = [1] x1 + [1] x2 + [0] 
               p(c_9) = [1]                   
        
        Following rules are strictly oriented:
        D#(*(x,y)) = [8] x + [8] y + [16]
                   > [8] x + [8] y + [4] 
                   = c_1(D#(x),D#(y))    
        
        
        Following rules are (at-least) weakly oriented:
          D#(+(x,y)) =  [8] x + [8] y + [0] 
                     >= [8] x + [8] y + [0] 
                     =  c_2(D#(x),D#(y))    
        
          D#(-(x,y)) =  [8] x + [8] y + [24]
                     >= [8] x + [8] y + [10]
                     =  c_3(D#(x),D#(y))    
        
        D#(div(x,y)) =  [8] x + [8] y + [0] 
                     >= [8] x + [8] y + [0] 
                     =  c_5(D#(x),D#(y))    
        
           D#(ln(x)) =  [8] x + [0]         
                     >= [8] x + [0]         
                     =  c_6(D#(x))          
        
        D#(minus(x)) =  [8] x + [0]         
                     >= [8] x + [0]         
                     =  c_7(D#(x))          
        
        D#(pow(x,y)) =  [8] x + [8] y + [16]
                     >= [8] x + [8] y + [0] 
                     =  c_8(D#(x),D#(y))    
        
***** Step 1.b:5.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
        - Weak DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:5.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
        - Weak DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: D#(ln(x)) -> c_6(D#(x))
          
        The strictly oriented rules are moved into the weak component.
****** Step 1.b:5.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
        - Weak DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1,2},
          uargs(c_3) = {1,2},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1,2}
        
        Following symbols are considered usable:
          {D#}
        TcT has computed the following interpretation:
                 p(*) = [1] x1 + [1] x2 + [2] 
                 p(+) = [1] x1 + [1] x2 + [2] 
                 p(-) = [1] x1 + [1] x2 + [1] 
                 p(0) = [0]                   
                 p(1) = [0]                   
                 p(2) = [8]                   
                 p(D) = [1] x1 + [0]          
          p(constant) = [0]                   
               p(div) = [1] x1 + [1] x2 + [0] 
                p(ln) = [1] x1 + [1]          
             p(minus) = [1] x1 + [0]          
               p(pow) = [1] x1 + [1] x2 + [1] 
                 p(t) = [2]                   
                p(D#) = [8] x1 + [0]          
               p(c_1) = [1] x1 + [1] x2 + [5] 
               p(c_2) = [1] x1 + [1] x2 + [12]
               p(c_3) = [1] x1 + [1] x2 + [8] 
               p(c_4) = [0]                   
               p(c_5) = [1] x1 + [1] x2 + [0] 
               p(c_6) = [1] x1 + [0]          
               p(c_7) = [1] x1 + [0]          
               p(c_8) = [1] x1 + [1] x2 + [8] 
               p(c_9) = [2]                   
        
        Following rules are strictly oriented:
        D#(ln(x)) = [8] x + [8]
                  > [8] x + [0]
                  = c_6(D#(x)) 
        
        
        Following rules are (at-least) weakly oriented:
          D#(*(x,y)) =  [8] x + [8] y + [16]
                     >= [8] x + [8] y + [5] 
                     =  c_1(D#(x),D#(y))    
        
          D#(+(x,y)) =  [8] x + [8] y + [16]
                     >= [8] x + [8] y + [12]
                     =  c_2(D#(x),D#(y))    
        
          D#(-(x,y)) =  [8] x + [8] y + [8] 
                     >= [8] x + [8] y + [8] 
                     =  c_3(D#(x),D#(y))    
        
        D#(div(x,y)) =  [8] x + [8] y + [0] 
                     >= [8] x + [8] y + [0] 
                     =  c_5(D#(x),D#(y))    
        
        D#(minus(x)) =  [8] x + [0]         
                     >= [8] x + [0]         
                     =  c_7(D#(x))          
        
        D#(pow(x,y)) =  [8] x + [8] y + [8] 
                     >= [8] x + [8] y + [8] 
                     =  c_8(D#(x),D#(y))    
        
****** Step 1.b:5.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(minus(x)) -> c_7(D#(x))
        - Weak DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:5.b:1.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(minus(x)) -> c_7(D#(x))
        - Weak DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: D#(minus(x)) -> c_7(D#(x))
          
        The strictly oriented rules are moved into the weak component.
******* Step 1.b:5.b:1.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(minus(x)) -> c_7(D#(x))
        - Weak DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1,2},
          uargs(c_3) = {1,2},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1,2}
        
        Following symbols are considered usable:
          {D#}
        TcT has computed the following interpretation:
                 p(*) = [1] x1 + [1] x2 + [12]
                 p(+) = [1] x1 + [1] x2 + [2] 
                 p(-) = [1] x1 + [1] x2 + [0] 
                 p(0) = [1]                   
                 p(1) = [0]                   
                 p(2) = [1]                   
                 p(D) = [1] x1 + [4]          
          p(constant) = [1]                   
               p(div) = [1] x1 + [1] x2 + [0] 
                p(ln) = [1] x1 + [4]          
             p(minus) = [1] x1 + [1]          
               p(pow) = [1] x1 + [1] x2 + [9] 
                 p(t) = [1]                   
                p(D#) = [1] x1 + [0]          
               p(c_1) = [1] x1 + [1] x2 + [1] 
               p(c_2) = [1] x1 + [1] x2 + [2] 
               p(c_3) = [1] x1 + [1] x2 + [0] 
               p(c_4) = [2]                   
               p(c_5) = [1] x1 + [1] x2 + [0] 
               p(c_6) = [1] x1 + [4]          
               p(c_7) = [1] x1 + [0]          
               p(c_8) = [1] x1 + [1] x2 + [0] 
               p(c_9) = [1]                   
        
        Following rules are strictly oriented:
        D#(minus(x)) = [1] x + [1]
                     > [1] x + [0]
                     = c_7(D#(x)) 
        
        
        Following rules are (at-least) weakly oriented:
          D#(*(x,y)) =  [1] x + [1] y + [12]
                     >= [1] x + [1] y + [1] 
                     =  c_1(D#(x),D#(y))    
        
          D#(+(x,y)) =  [1] x + [1] y + [2] 
                     >= [1] x + [1] y + [2] 
                     =  c_2(D#(x),D#(y))    
        
          D#(-(x,y)) =  [1] x + [1] y + [0] 
                     >= [1] x + [1] y + [0] 
                     =  c_3(D#(x),D#(y))    
        
        D#(div(x,y)) =  [1] x + [1] y + [0] 
                     >= [1] x + [1] y + [0] 
                     =  c_5(D#(x),D#(y))    
        
           D#(ln(x)) =  [1] x + [4]         
                     >= [1] x + [4]         
                     =  c_6(D#(x))          
        
        D#(pow(x,y)) =  [1] x + [1] y + [9] 
                     >= [1] x + [1] y + [0] 
                     =  c_8(D#(x),D#(y))    
        
******* Step 1.b:5.b:1.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            D#(div(x,y)) -> c_5(D#(x),D#(y))
        - Weak DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:5.b:1.b:1.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(div(x,y)) -> c_5(D#(x),D#(y))
        - Weak DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: D#(div(x,y)) -> c_5(D#(x),D#(y))
          
        The strictly oriented rules are moved into the weak component.
******** Step 1.b:5.b:1.b:1.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            D#(div(x,y)) -> c_5(D#(x),D#(y))
        - Weak DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1,2},
          uargs(c_3) = {1,2},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1,2}
        
        Following symbols are considered usable:
          {D#}
        TcT has computed the following interpretation:
                 p(*) = [1] x1 + [1] x2 + [1]
                 p(+) = [1] x1 + [1] x2 + [0]
                 p(-) = [1] x1 + [1] x2 + [0]
                 p(0) = [2]                  
                 p(1) = [1]                  
                 p(2) = [0]                  
                 p(D) = [0]                  
          p(constant) = [0]                  
               p(div) = [1] x1 + [1] x2 + [1]
                p(ln) = [1] x1 + [3]         
             p(minus) = [1] x1 + [0]         
               p(pow) = [1] x1 + [1] x2 + [0]
                 p(t) = [2]                  
                p(D#) = [8] x1 + [0]         
               p(c_1) = [1] x1 + [1] x2 + [6]
               p(c_2) = [1] x1 + [1] x2 + [0]
               p(c_3) = [1] x1 + [1] x2 + [0]
               p(c_4) = [1]                  
               p(c_5) = [1] x1 + [1] x2 + [3]
               p(c_6) = [1] x1 + [14]        
               p(c_7) = [1] x1 + [0]         
               p(c_8) = [1] x1 + [1] x2 + [0]
               p(c_9) = [1]                  
        
        Following rules are strictly oriented:
        D#(div(x,y)) = [8] x + [8] y + [8]
                     > [8] x + [8] y + [3]
                     = c_5(D#(x),D#(y))   
        
        
        Following rules are (at-least) weakly oriented:
          D#(*(x,y)) =  [8] x + [8] y + [8]
                     >= [8] x + [8] y + [6]
                     =  c_1(D#(x),D#(y))   
        
          D#(+(x,y)) =  [8] x + [8] y + [0]
                     >= [8] x + [8] y + [0]
                     =  c_2(D#(x),D#(y))   
        
          D#(-(x,y)) =  [8] x + [8] y + [0]
                     >= [8] x + [8] y + [0]
                     =  c_3(D#(x),D#(y))   
        
           D#(ln(x)) =  [8] x + [24]       
                     >= [8] x + [14]       
                     =  c_6(D#(x))         
        
        D#(minus(x)) =  [8] x + [0]        
                     >= [8] x + [0]        
                     =  c_7(D#(x))         
        
        D#(pow(x,y)) =  [8] x + [8] y + [0]
                     >= [8] x + [8] y + [0]
                     =  c_8(D#(x),D#(y))   
        
******** Step 1.b:5.b:1.b:1.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******** Step 1.b:5.b:1.b:1.b:1.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            D#(*(x,y)) -> c_1(D#(x),D#(y))
            D#(+(x,y)) -> c_2(D#(x),D#(y))
            D#(-(x,y)) -> c_3(D#(x),D#(y))
            D#(div(x,y)) -> c_5(D#(x),D#(y))
            D#(ln(x)) -> c_6(D#(x))
            D#(minus(x)) -> c_7(D#(x))
            D#(pow(x,y)) -> c_8(D#(x),D#(y))
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:D#(*(x,y)) -> c_1(D#(x),D#(y))
             -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_2 D#(minus(x)) -> c_7(D#(x)):6
             -->_1 D#(minus(x)) -> c_7(D#(x)):6
             -->_2 D#(ln(x)) -> c_6(D#(x)):5
             -->_1 D#(ln(x)) -> c_6(D#(x)):5
             -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
             -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
          
          2:W:D#(+(x,y)) -> c_2(D#(x),D#(y))
             -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_2 D#(minus(x)) -> c_7(D#(x)):6
             -->_1 D#(minus(x)) -> c_7(D#(x)):6
             -->_2 D#(ln(x)) -> c_6(D#(x)):5
             -->_1 D#(ln(x)) -> c_6(D#(x)):5
             -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
             -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
          
          3:W:D#(-(x,y)) -> c_3(D#(x),D#(y))
             -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_2 D#(minus(x)) -> c_7(D#(x)):6
             -->_1 D#(minus(x)) -> c_7(D#(x)):6
             -->_2 D#(ln(x)) -> c_6(D#(x)):5
             -->_1 D#(ln(x)) -> c_6(D#(x)):5
             -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
             -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
          
          4:W:D#(div(x,y)) -> c_5(D#(x),D#(y))
             -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_2 D#(minus(x)) -> c_7(D#(x)):6
             -->_1 D#(minus(x)) -> c_7(D#(x)):6
             -->_2 D#(ln(x)) -> c_6(D#(x)):5
             -->_1 D#(ln(x)) -> c_6(D#(x)):5
             -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
             -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
          
          5:W:D#(ln(x)) -> c_6(D#(x))
             -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_1 D#(minus(x)) -> c_7(D#(x)):6
             -->_1 D#(ln(x)) -> c_6(D#(x)):5
             -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
          
          6:W:D#(minus(x)) -> c_7(D#(x))
             -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_1 D#(minus(x)) -> c_7(D#(x)):6
             -->_1 D#(ln(x)) -> c_6(D#(x)):5
             -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
          
          7:W:D#(pow(x,y)) -> c_8(D#(x),D#(y))
             -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7
             -->_2 D#(minus(x)) -> c_7(D#(x)):6
             -->_1 D#(minus(x)) -> c_7(D#(x)):6
             -->_2 D#(ln(x)) -> c_6(D#(x)):5
             -->_1 D#(ln(x)) -> c_6(D#(x)):5
             -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4
             -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3
             -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2
             -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
             -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: D#(*(x,y)) -> c_1(D#(x),D#(y))
          7: D#(pow(x,y)) -> c_8(D#(x),D#(y))
          6: D#(minus(x)) -> c_7(D#(x))
          5: D#(ln(x)) -> c_6(D#(x))
          4: D#(div(x,y)) -> c_5(D#(x),D#(y))
          3: D#(-(x,y)) -> c_3(D#(x),D#(y))
          2: D#(+(x,y)) -> c_2(D#(x),D#(y))
******** Step 1.b:5.b:1.b:1.b:1.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2
            ,c_6/1,c_7/1,c_8/2,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus
            ,pow,t}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))