* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) D(+(x,y)) -> +(D(x),D(y)) D(-(x,y)) -> -(D(x),D(y)) D(constant()) -> 0() D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2()))) D(ln(x)) -> div(D(x),x) D(minus(x)) -> minus(D(x)) D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) D(t()) -> 1() - Signature: {D/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0} - Obligation: innermost runtime complexity wrt. defined symbols {D} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) D(+(x,y)) -> +(D(x),D(y)) D(-(x,y)) -> -(D(x),D(y)) D(constant()) -> 0() D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2()))) D(ln(x)) -> div(D(x),x) D(minus(x)) -> minus(D(x)) D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) D(t()) -> 1() - Signature: {D/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0} - Obligation: innermost runtime complexity wrt. defined symbols {D} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: D(x){x -> *(x,y)} = D(*(x,y)) ->^+ +(*(y,D(x)),*(x,D(y))) = C[D(x) = D(x){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) D(+(x,y)) -> +(D(x),D(y)) D(-(x,y)) -> -(D(x),D(y)) D(constant()) -> 0() D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2()))) D(ln(x)) -> div(D(x),x) D(minus(x)) -> minus(D(x)) D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) D(t()) -> 1() - Signature: {D/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0} - Obligation: innermost runtime complexity wrt. defined symbols {D} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(constant()) -> c_4() D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) D#(t()) -> c_9() Weak DPs and mark the set of starting terms. ** Step 1.b:2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(constant()) -> c_4() D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) D#(t()) -> c_9() - Strict TRS: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) D(+(x,y)) -> +(D(x),D(y)) D(-(x,y)) -> -(D(x),D(y)) D(constant()) -> 0() D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,2()))) D(ln(x)) -> div(D(x),x) D(minus(x)) -> minus(D(x)) D(pow(x,y)) -> +(*(*(y,pow(x,-(y,1()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) D(t()) -> 1() - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(constant()) -> c_4() D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) D#(t()) -> c_9() ** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(constant()) -> c_4() D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) D#(t()) -> c_9() - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {4,9} by application of Pre({4,9}) = {1,2,3,5,6,7,8}. Here rules are labelled as follows: 1: D#(*(x,y)) -> c_1(D#(x),D#(y)) 2: D#(+(x,y)) -> c_2(D#(x),D#(y)) 3: D#(-(x,y)) -> c_3(D#(x),D#(y)) 4: D#(constant()) -> c_4() 5: D#(div(x,y)) -> c_5(D#(x),D#(y)) 6: D#(ln(x)) -> c_6(D#(x)) 7: D#(minus(x)) -> c_7(D#(x)) 8: D#(pow(x,y)) -> c_8(D#(x),D#(y)) 9: D#(t()) -> c_9() ** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Weak DPs: D#(constant()) -> c_4() D#(t()) -> c_9() - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:D#(*(x,y)) -> c_1(D#(x),D#(y)) -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_2 D#(minus(x)) -> c_7(D#(x)):6 -->_1 D#(minus(x)) -> c_7(D#(x)):6 -->_2 D#(ln(x)) -> c_6(D#(x)):5 -->_1 D#(ln(x)) -> c_6(D#(x)):5 -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_2 D#(t()) -> c_9():9 -->_1 D#(t()) -> c_9():9 -->_2 D#(constant()) -> c_4():8 -->_1 D#(constant()) -> c_4():8 -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 2:S:D#(+(x,y)) -> c_2(D#(x),D#(y)) -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_2 D#(minus(x)) -> c_7(D#(x)):6 -->_1 D#(minus(x)) -> c_7(D#(x)):6 -->_2 D#(ln(x)) -> c_6(D#(x)):5 -->_1 D#(ln(x)) -> c_6(D#(x)):5 -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_2 D#(t()) -> c_9():9 -->_1 D#(t()) -> c_9():9 -->_2 D#(constant()) -> c_4():8 -->_1 D#(constant()) -> c_4():8 -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 3:S:D#(-(x,y)) -> c_3(D#(x),D#(y)) -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_2 D#(minus(x)) -> c_7(D#(x)):6 -->_1 D#(minus(x)) -> c_7(D#(x)):6 -->_2 D#(ln(x)) -> c_6(D#(x)):5 -->_1 D#(ln(x)) -> c_6(D#(x)):5 -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_2 D#(t()) -> c_9():9 -->_1 D#(t()) -> c_9():9 -->_2 D#(constant()) -> c_4():8 -->_1 D#(constant()) -> c_4():8 -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 4:S:D#(div(x,y)) -> c_5(D#(x),D#(y)) -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_2 D#(minus(x)) -> c_7(D#(x)):6 -->_1 D#(minus(x)) -> c_7(D#(x)):6 -->_2 D#(ln(x)) -> c_6(D#(x)):5 -->_1 D#(ln(x)) -> c_6(D#(x)):5 -->_2 D#(t()) -> c_9():9 -->_1 D#(t()) -> c_9():9 -->_2 D#(constant()) -> c_4():8 -->_1 D#(constant()) -> c_4():8 -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 5:S:D#(ln(x)) -> c_6(D#(x)) -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_1 D#(minus(x)) -> c_7(D#(x)):6 -->_1 D#(t()) -> c_9():9 -->_1 D#(constant()) -> c_4():8 -->_1 D#(ln(x)) -> c_6(D#(x)):5 -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 6:S:D#(minus(x)) -> c_7(D#(x)) -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_1 D#(t()) -> c_9():9 -->_1 D#(constant()) -> c_4():8 -->_1 D#(minus(x)) -> c_7(D#(x)):6 -->_1 D#(ln(x)) -> c_6(D#(x)):5 -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 7:S:D#(pow(x,y)) -> c_8(D#(x),D#(y)) -->_2 D#(t()) -> c_9():9 -->_1 D#(t()) -> c_9():9 -->_2 D#(constant()) -> c_4():8 -->_1 D#(constant()) -> c_4():8 -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_2 D#(minus(x)) -> c_7(D#(x)):6 -->_1 D#(minus(x)) -> c_7(D#(x)):6 -->_2 D#(ln(x)) -> c_6(D#(x)):5 -->_1 D#(ln(x)) -> c_6(D#(x)):5 -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 8:W:D#(constant()) -> c_4() 9:W:D#(t()) -> c_9() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 8: D#(constant()) -> c_4() 9: D#(t()) -> c_9() ** Step 1.b:5: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 3: D#(-(x,y)) -> c_3(D#(x),D#(y)) The strictly oriented rules are moved into the weak component. *** Step 1.b:5.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_2) = {1,2}, uargs(c_3) = {1,2}, uargs(c_5) = {1,2}, uargs(c_6) = {1}, uargs(c_7) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {D#} TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [0] p(+) = [1] x1 + [1] x2 + [0] p(-) = [1] x1 + [1] x2 + [2] p(0) = [2] p(1) = [0] p(2) = [2] p(D) = [0] p(constant) = [1] p(div) = [1] x1 + [1] x2 + [0] p(ln) = [1] x1 + [0] p(minus) = [1] x1 + [0] p(pow) = [1] x1 + [1] x2 + [0] p(t) = [0] p(D#) = [1] x1 + [0] p(c_1) = [1] x1 + [1] x2 + [0] p(c_2) = [1] x1 + [1] x2 + [0] p(c_3) = [1] x1 + [1] x2 + [0] p(c_4) = [1] p(c_5) = [1] x1 + [1] x2 + [0] p(c_6) = [1] x1 + [0] p(c_7) = [1] x1 + [0] p(c_8) = [1] x1 + [1] x2 + [0] p(c_9) = [0] Following rules are strictly oriented: D#(-(x,y)) = [1] x + [1] y + [2] > [1] x + [1] y + [0] = c_3(D#(x),D#(y)) Following rules are (at-least) weakly oriented: D#(*(x,y)) = [1] x + [1] y + [0] >= [1] x + [1] y + [0] = c_1(D#(x),D#(y)) D#(+(x,y)) = [1] x + [1] y + [0] >= [1] x + [1] y + [0] = c_2(D#(x),D#(y)) D#(div(x,y)) = [1] x + [1] y + [0] >= [1] x + [1] y + [0] = c_5(D#(x),D#(y)) D#(ln(x)) = [1] x + [0] >= [1] x + [0] = c_6(D#(x)) D#(minus(x)) = [1] x + [0] >= [1] x + [0] = c_7(D#(x)) D#(pow(x,y)) = [1] x + [1] y + [0] >= [1] x + [1] y + [0] = c_8(D#(x),D#(y)) *** Step 1.b:5.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Weak DPs: D#(-(x,y)) -> c_3(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 1.b:5.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Weak DPs: D#(-(x,y)) -> c_3(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 2: D#(+(x,y)) -> c_2(D#(x),D#(y)) 6: D#(pow(x,y)) -> c_8(D#(x),D#(y)) The strictly oriented rules are moved into the weak component. **** Step 1.b:5.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Weak DPs: D#(-(x,y)) -> c_3(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_2) = {1,2}, uargs(c_3) = {1,2}, uargs(c_5) = {1,2}, uargs(c_6) = {1}, uargs(c_7) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {D#} TcT has computed the following interpretation: p(*) = [1 2] x1 + [1 5] x2 + [0] [0 0] [0 0] [0] p(+) = [1 6] x1 + [1 2] x2 + [5] [0 0] [0 0] [4] p(-) = [1 6] x1 + [1 2] x2 + [0] [0 0] [0 0] [5] p(0) = [0] [2] p(1) = [0] [1] p(2) = [0] [0] p(D) = [1 2] x1 + [0] [4 2] [0] p(constant) = [2] [0] p(div) = [1 2] x1 + [1 3] x2 + [0] [0 0] [0 0] [0] p(ln) = [1 4] x1 + [1] [0 0] [1] p(minus) = [1 4] x1 + [1] [0 0] [1] p(pow) = [1 2] x1 + [1 4] x2 + [0] [0 0] [0 0] [3] p(t) = [0] [0] p(D#) = [1 2] x1 + [0] [0 2] [3] p(c_1) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [3] p(c_2) = [1 2] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] p(c_3) = [1 2] x1 + [1 0] x2 + [4] [0 0] [0 0] [0] p(c_4) = [0] [2] p(c_5) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [3] p(c_6) = [1 1] x1 + [0] [0 0] [1] p(c_7) = [1 1] x1 + [0] [0 0] [4] p(c_8) = [1 0] x1 + [1 1] x2 + [2] [0 0] [0 0] [5] p(c_9) = [1] [0] Following rules are strictly oriented: D#(+(x,y)) = [1 6] x + [1 2] y + [13] [0 0] [0 0] [11] > [1 6] x + [1 2] y + [6] [0 0] [0 0] [0] = c_2(D#(x),D#(y)) D#(pow(x,y)) = [1 2] x + [1 4] y + [6] [0 0] [0 0] [9] > [1 2] x + [1 4] y + [5] [0 0] [0 0] [5] = c_8(D#(x),D#(y)) Following rules are (at-least) weakly oriented: D#(*(x,y)) = [1 2] x + [1 5] y + [0] [0 0] [0 0] [3] >= [1 2] x + [1 2] y + [0] [0 0] [0 0] [3] = c_1(D#(x),D#(y)) D#(-(x,y)) = [1 6] x + [1 2] y + [10] [0 0] [0 0] [13] >= [1 6] x + [1 2] y + [10] [0 0] [0 0] [0] = c_3(D#(x),D#(y)) D#(div(x,y)) = [1 2] x + [1 3] y + [0] [0 0] [0 0] [3] >= [1 2] x + [1 2] y + [0] [0 0] [0 0] [3] = c_5(D#(x),D#(y)) D#(ln(x)) = [1 4] x + [3] [0 0] [5] >= [1 4] x + [3] [0 0] [1] = c_6(D#(x)) D#(minus(x)) = [1 4] x + [3] [0 0] [5] >= [1 4] x + [3] [0 0] [4] = c_7(D#(x)) **** Step 1.b:5.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) - Weak DPs: D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 1.b:5.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) - Weak DPs: D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: D#(*(x,y)) -> c_1(D#(x),D#(y)) The strictly oriented rules are moved into the weak component. ***** Step 1.b:5.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) - Weak DPs: D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_2) = {1,2}, uargs(c_3) = {1,2}, uargs(c_5) = {1,2}, uargs(c_6) = {1}, uargs(c_7) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {D#} TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [2] p(+) = [1] x1 + [1] x2 + [0] p(-) = [1] x1 + [1] x2 + [3] p(0) = [1] p(1) = [0] p(2) = [2] p(D) = [2] x1 + [0] p(constant) = [1] p(div) = [1] x1 + [1] x2 + [0] p(ln) = [1] x1 + [0] p(minus) = [1] x1 + [0] p(pow) = [1] x1 + [1] x2 + [2] p(t) = [2] p(D#) = [8] x1 + [0] p(c_1) = [1] x1 + [1] x2 + [4] p(c_2) = [1] x1 + [1] x2 + [0] p(c_3) = [1] x1 + [1] x2 + [10] p(c_4) = [1] p(c_5) = [1] x1 + [1] x2 + [0] p(c_6) = [1] x1 + [0] p(c_7) = [1] x1 + [0] p(c_8) = [1] x1 + [1] x2 + [0] p(c_9) = [1] Following rules are strictly oriented: D#(*(x,y)) = [8] x + [8] y + [16] > [8] x + [8] y + [4] = c_1(D#(x),D#(y)) Following rules are (at-least) weakly oriented: D#(+(x,y)) = [8] x + [8] y + [0] >= [8] x + [8] y + [0] = c_2(D#(x),D#(y)) D#(-(x,y)) = [8] x + [8] y + [24] >= [8] x + [8] y + [10] = c_3(D#(x),D#(y)) D#(div(x,y)) = [8] x + [8] y + [0] >= [8] x + [8] y + [0] = c_5(D#(x),D#(y)) D#(ln(x)) = [8] x + [0] >= [8] x + [0] = c_6(D#(x)) D#(minus(x)) = [8] x + [0] >= [8] x + [0] = c_7(D#(x)) D#(pow(x,y)) = [8] x + [8] y + [16] >= [8] x + [8] y + [0] = c_8(D#(x),D#(y)) ***** Step 1.b:5.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) - Weak DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ***** Step 1.b:5.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) - Weak DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 2: D#(ln(x)) -> c_6(D#(x)) The strictly oriented rules are moved into the weak component. ****** Step 1.b:5.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) - Weak DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_2) = {1,2}, uargs(c_3) = {1,2}, uargs(c_5) = {1,2}, uargs(c_6) = {1}, uargs(c_7) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {D#} TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [2] p(+) = [1] x1 + [1] x2 + [2] p(-) = [1] x1 + [1] x2 + [1] p(0) = [0] p(1) = [0] p(2) = [8] p(D) = [1] x1 + [0] p(constant) = [0] p(div) = [1] x1 + [1] x2 + [0] p(ln) = [1] x1 + [1] p(minus) = [1] x1 + [0] p(pow) = [1] x1 + [1] x2 + [1] p(t) = [2] p(D#) = [8] x1 + [0] p(c_1) = [1] x1 + [1] x2 + [5] p(c_2) = [1] x1 + [1] x2 + [12] p(c_3) = [1] x1 + [1] x2 + [8] p(c_4) = [0] p(c_5) = [1] x1 + [1] x2 + [0] p(c_6) = [1] x1 + [0] p(c_7) = [1] x1 + [0] p(c_8) = [1] x1 + [1] x2 + [8] p(c_9) = [2] Following rules are strictly oriented: D#(ln(x)) = [8] x + [8] > [8] x + [0] = c_6(D#(x)) Following rules are (at-least) weakly oriented: D#(*(x,y)) = [8] x + [8] y + [16] >= [8] x + [8] y + [5] = c_1(D#(x),D#(y)) D#(+(x,y)) = [8] x + [8] y + [16] >= [8] x + [8] y + [12] = c_2(D#(x),D#(y)) D#(-(x,y)) = [8] x + [8] y + [8] >= [8] x + [8] y + [8] = c_3(D#(x),D#(y)) D#(div(x,y)) = [8] x + [8] y + [0] >= [8] x + [8] y + [0] = c_5(D#(x),D#(y)) D#(minus(x)) = [8] x + [0] >= [8] x + [0] = c_7(D#(x)) D#(pow(x,y)) = [8] x + [8] y + [8] >= [8] x + [8] y + [8] = c_8(D#(x),D#(y)) ****** Step 1.b:5.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(minus(x)) -> c_7(D#(x)) - Weak DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ****** Step 1.b:5.b:1.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(minus(x)) -> c_7(D#(x)) - Weak DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 2: D#(minus(x)) -> c_7(D#(x)) The strictly oriented rules are moved into the weak component. ******* Step 1.b:5.b:1.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(minus(x)) -> c_7(D#(x)) - Weak DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_2) = {1,2}, uargs(c_3) = {1,2}, uargs(c_5) = {1,2}, uargs(c_6) = {1}, uargs(c_7) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {D#} TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [12] p(+) = [1] x1 + [1] x2 + [2] p(-) = [1] x1 + [1] x2 + [0] p(0) = [1] p(1) = [0] p(2) = [1] p(D) = [1] x1 + [4] p(constant) = [1] p(div) = [1] x1 + [1] x2 + [0] p(ln) = [1] x1 + [4] p(minus) = [1] x1 + [1] p(pow) = [1] x1 + [1] x2 + [9] p(t) = [1] p(D#) = [1] x1 + [0] p(c_1) = [1] x1 + [1] x2 + [1] p(c_2) = [1] x1 + [1] x2 + [2] p(c_3) = [1] x1 + [1] x2 + [0] p(c_4) = [2] p(c_5) = [1] x1 + [1] x2 + [0] p(c_6) = [1] x1 + [4] p(c_7) = [1] x1 + [0] p(c_8) = [1] x1 + [1] x2 + [0] p(c_9) = [1] Following rules are strictly oriented: D#(minus(x)) = [1] x + [1] > [1] x + [0] = c_7(D#(x)) Following rules are (at-least) weakly oriented: D#(*(x,y)) = [1] x + [1] y + [12] >= [1] x + [1] y + [1] = c_1(D#(x),D#(y)) D#(+(x,y)) = [1] x + [1] y + [2] >= [1] x + [1] y + [2] = c_2(D#(x),D#(y)) D#(-(x,y)) = [1] x + [1] y + [0] >= [1] x + [1] y + [0] = c_3(D#(x),D#(y)) D#(div(x,y)) = [1] x + [1] y + [0] >= [1] x + [1] y + [0] = c_5(D#(x),D#(y)) D#(ln(x)) = [1] x + [4] >= [1] x + [4] = c_6(D#(x)) D#(pow(x,y)) = [1] x + [1] y + [9] >= [1] x + [1] y + [0] = c_8(D#(x),D#(y)) ******* Step 1.b:5.b:1.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: D#(div(x,y)) -> c_5(D#(x),D#(y)) - Weak DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ******* Step 1.b:5.b:1.b:1.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(div(x,y)) -> c_5(D#(x),D#(y)) - Weak DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: D#(div(x,y)) -> c_5(D#(x),D#(y)) The strictly oriented rules are moved into the weak component. ******** Step 1.b:5.b:1.b:1.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D#(div(x,y)) -> c_5(D#(x),D#(y)) - Weak DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_2) = {1,2}, uargs(c_3) = {1,2}, uargs(c_5) = {1,2}, uargs(c_6) = {1}, uargs(c_7) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {D#} TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [1] p(+) = [1] x1 + [1] x2 + [0] p(-) = [1] x1 + [1] x2 + [0] p(0) = [2] p(1) = [1] p(2) = [0] p(D) = [0] p(constant) = [0] p(div) = [1] x1 + [1] x2 + [1] p(ln) = [1] x1 + [3] p(minus) = [1] x1 + [0] p(pow) = [1] x1 + [1] x2 + [0] p(t) = [2] p(D#) = [8] x1 + [0] p(c_1) = [1] x1 + [1] x2 + [6] p(c_2) = [1] x1 + [1] x2 + [0] p(c_3) = [1] x1 + [1] x2 + [0] p(c_4) = [1] p(c_5) = [1] x1 + [1] x2 + [3] p(c_6) = [1] x1 + [14] p(c_7) = [1] x1 + [0] p(c_8) = [1] x1 + [1] x2 + [0] p(c_9) = [1] Following rules are strictly oriented: D#(div(x,y)) = [8] x + [8] y + [8] > [8] x + [8] y + [3] = c_5(D#(x),D#(y)) Following rules are (at-least) weakly oriented: D#(*(x,y)) = [8] x + [8] y + [8] >= [8] x + [8] y + [6] = c_1(D#(x),D#(y)) D#(+(x,y)) = [8] x + [8] y + [0] >= [8] x + [8] y + [0] = c_2(D#(x),D#(y)) D#(-(x,y)) = [8] x + [8] y + [0] >= [8] x + [8] y + [0] = c_3(D#(x),D#(y)) D#(ln(x)) = [8] x + [24] >= [8] x + [14] = c_6(D#(x)) D#(minus(x)) = [8] x + [0] >= [8] x + [0] = c_7(D#(x)) D#(pow(x,y)) = [8] x + [8] y + [0] >= [8] x + [8] y + [0] = c_8(D#(x),D#(y)) ******** Step 1.b:5.b:1.b:1.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ******** Step 1.b:5.b:1.b:1.b:1.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: D#(*(x,y)) -> c_1(D#(x),D#(y)) D#(+(x,y)) -> c_2(D#(x),D#(y)) D#(-(x,y)) -> c_3(D#(x),D#(y)) D#(div(x,y)) -> c_5(D#(x),D#(y)) D#(ln(x)) -> c_6(D#(x)) D#(minus(x)) -> c_7(D#(x)) D#(pow(x,y)) -> c_8(D#(x),D#(y)) - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:D#(*(x,y)) -> c_1(D#(x),D#(y)) -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_2 D#(minus(x)) -> c_7(D#(x)):6 -->_1 D#(minus(x)) -> c_7(D#(x)):6 -->_2 D#(ln(x)) -> c_6(D#(x)):5 -->_1 D#(ln(x)) -> c_6(D#(x)):5 -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 2:W:D#(+(x,y)) -> c_2(D#(x),D#(y)) -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_2 D#(minus(x)) -> c_7(D#(x)):6 -->_1 D#(minus(x)) -> c_7(D#(x)):6 -->_2 D#(ln(x)) -> c_6(D#(x)):5 -->_1 D#(ln(x)) -> c_6(D#(x)):5 -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 3:W:D#(-(x,y)) -> c_3(D#(x),D#(y)) -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_2 D#(minus(x)) -> c_7(D#(x)):6 -->_1 D#(minus(x)) -> c_7(D#(x)):6 -->_2 D#(ln(x)) -> c_6(D#(x)):5 -->_1 D#(ln(x)) -> c_6(D#(x)):5 -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 4:W:D#(div(x,y)) -> c_5(D#(x),D#(y)) -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_2 D#(minus(x)) -> c_7(D#(x)):6 -->_1 D#(minus(x)) -> c_7(D#(x)):6 -->_2 D#(ln(x)) -> c_6(D#(x)):5 -->_1 D#(ln(x)) -> c_6(D#(x)):5 -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 5:W:D#(ln(x)) -> c_6(D#(x)) -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_1 D#(minus(x)) -> c_7(D#(x)):6 -->_1 D#(ln(x)) -> c_6(D#(x)):5 -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 6:W:D#(minus(x)) -> c_7(D#(x)) -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_1 D#(minus(x)) -> c_7(D#(x)):6 -->_1 D#(ln(x)) -> c_6(D#(x)):5 -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 7:W:D#(pow(x,y)) -> c_8(D#(x),D#(y)) -->_2 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_1 D#(pow(x,y)) -> c_8(D#(x),D#(y)):7 -->_2 D#(minus(x)) -> c_7(D#(x)):6 -->_1 D#(minus(x)) -> c_7(D#(x)):6 -->_2 D#(ln(x)) -> c_6(D#(x)):5 -->_1 D#(ln(x)) -> c_6(D#(x)):5 -->_2 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_1 D#(div(x,y)) -> c_5(D#(x),D#(y)):4 -->_2 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_1 D#(-(x,y)) -> c_3(D#(x),D#(y)):3 -->_2 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_1 D#(+(x,y)) -> c_2(D#(x),D#(y)):2 -->_2 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 -->_1 D#(*(x,y)) -> c_1(D#(x),D#(y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: D#(*(x,y)) -> c_1(D#(x),D#(y)) 7: D#(pow(x,y)) -> c_8(D#(x),D#(y)) 6: D#(minus(x)) -> c_7(D#(x)) 5: D#(ln(x)) -> c_6(D#(x)) 4: D#(div(x,y)) -> c_5(D#(x),D#(y)) 3: D#(-(x,y)) -> c_3(D#(x),D#(y)) 2: D#(+(x,y)) -> c_2(D#(x),D#(y)) ******** Step 1.b:5.b:1.b:1.b:1.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {D/1,D#/1} / {*/2,+/2,-/2,0/0,1/0,2/0,constant/0,div/2,ln/1,minus/1,pow/2,t/0,c_1/2,c_2/2,c_3/2,c_4/0,c_5/2 ,c_6/1,c_7/1,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#} and constructors {*,+,-,0,1,2,constant,div,ln,minus ,pow,t} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))