0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 2 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 5332 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 115 ms)
↳18 CpxRNTS
↳19 FinalProof (⇔, 0 ms)
↳20 BOUNDS(1, n^1)
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
D(minus(x)) → minus(D(x))
D(div(x, y)) → -(div(D(x), y), div(*(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y)))
D(t) → 1 [1]
D(constant) → 0 [1]
D(+(x, y)) → +(D(x), D(y)) [1]
D(*(x, y)) → +(*(y, D(x)), *(x, D(y))) [1]
D(-(x, y)) → -(D(x), D(y)) [1]
D(minus(x)) → minus(D(x)) [1]
D(div(x, y)) → -(div(D(x), y), div(*(x, D(y)), pow(y, 2))) [1]
D(ln(x)) → div(D(x), x) [1]
D(pow(x, y)) → +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y))) [1]
D(t) → 1 [1]
D(constant) → 0 [1]
D(+(x, y)) → +(D(x), D(y)) [1]
D(*(x, y)) → +(*(y, D(x)), *(x, D(y))) [1]
D(-(x, y)) → -(D(x), D(y)) [1]
D(minus(x)) → minus(D(x)) [1]
D(div(x, y)) → -(div(D(x), y), div(*(x, D(y)), pow(y, 2))) [1]
D(ln(x)) → div(D(x), x) [1]
D(pow(x, y)) → +(*(*(y, pow(x, -(y, 1))), D(x)), *(*(pow(x, y), ln(x)), D(y))) [1]
D :: t:1:constant:0:+:*:-:minus:div:2:pow:ln → t:1:constant:0:+:*:-:minus:div:2:pow:ln t :: t:1:constant:0:+:*:-:minus:div:2:pow:ln 1 :: t:1:constant:0:+:*:-:minus:div:2:pow:ln constant :: t:1:constant:0:+:*:-:minus:div:2:pow:ln 0 :: t:1:constant:0:+:*:-:minus:div:2:pow:ln + :: t:1:constant:0:+:*:-:minus:div:2:pow:ln → t:1:constant:0:+:*:-:minus:div:2:pow:ln → t:1:constant:0:+:*:-:minus:div:2:pow:ln * :: t:1:constant:0:+:*:-:minus:div:2:pow:ln → t:1:constant:0:+:*:-:minus:div:2:pow:ln → t:1:constant:0:+:*:-:minus:div:2:pow:ln - :: t:1:constant:0:+:*:-:minus:div:2:pow:ln → t:1:constant:0:+:*:-:minus:div:2:pow:ln → t:1:constant:0:+:*:-:minus:div:2:pow:ln minus :: t:1:constant:0:+:*:-:minus:div:2:pow:ln → t:1:constant:0:+:*:-:minus:div:2:pow:ln div :: t:1:constant:0:+:*:-:minus:div:2:pow:ln → t:1:constant:0:+:*:-:minus:div:2:pow:ln → t:1:constant:0:+:*:-:minus:div:2:pow:ln pow :: t:1:constant:0:+:*:-:minus:div:2:pow:ln → t:1:constant:0:+:*:-:minus:div:2:pow:ln → t:1:constant:0:+:*:-:minus:div:2:pow:ln 2 :: t:1:constant:0:+:*:-:minus:div:2:pow:ln ln :: t:1:constant:0:+:*:-:minus:div:2:pow:ln → t:1:constant:0:+:*:-:minus:div:2:pow:ln |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
D
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
t => 4
1 => 1
constant => 3
0 => 0
2 => 2
D(z) -{ 1 }→ 1 :|: z = 4
D(z) -{ 1 }→ 0 :|: z = 3
D(z) -{ 1 }→ 1 + D(x) :|: x >= 0, z = 1 + x
D(z) -{ 1 }→ 1 + D(x) + x :|: x >= 0, z = 1 + x
D(z) -{ 1 }→ 1 + D(x) + D(y) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + (1 + y + D(x)) + (1 + x + D(y)) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + (1 + D(x) + y) + (1 + (1 + x + D(y)) + (1 + y + 2)) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + (1 + (1 + y + (1 + x + (1 + y + 1))) + D(x)) + (1 + (1 + (1 + x + y) + (1 + x)) + D(y)) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 :|: z = 4
D(z) -{ 1 }→ 0 :|: z = 3
D(z) -{ 1 }→ 1 + D(z - 1) :|: z - 1 >= 0
D(z) -{ 1 }→ 1 + D(x) + D(y) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + D(z - 1) + (z - 1) :|: z - 1 >= 0
D(z) -{ 1 }→ 1 + (1 + y + D(x)) + (1 + x + D(y)) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + (1 + D(x) + y) + (1 + (1 + x + D(y)) + (1 + y + 2)) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + (1 + (1 + y + (1 + x + (1 + y + 1))) + D(x)) + (1 + (1 + (1 + x + y) + (1 + x)) + D(y)) :|: z = 1 + x + y, x >= 0, y >= 0
{ D } |
D(z) -{ 1 }→ 1 :|: z = 4
D(z) -{ 1 }→ 0 :|: z = 3
D(z) -{ 1 }→ 1 + D(z - 1) :|: z - 1 >= 0
D(z) -{ 1 }→ 1 + D(x) + D(y) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + D(z - 1) + (z - 1) :|: z - 1 >= 0
D(z) -{ 1 }→ 1 + (1 + y + D(x)) + (1 + x + D(y)) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + (1 + D(x) + y) + (1 + (1 + x + D(y)) + (1 + y + 2)) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + (1 + (1 + y + (1 + x + (1 + y + 1))) + D(x)) + (1 + (1 + (1 + x + y) + (1 + x)) + D(y)) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 :|: z = 4
D(z) -{ 1 }→ 0 :|: z = 3
D(z) -{ 1 }→ 1 + D(z - 1) :|: z - 1 >= 0
D(z) -{ 1 }→ 1 + D(x) + D(y) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + D(z - 1) + (z - 1) :|: z - 1 >= 0
D(z) -{ 1 }→ 1 + (1 + y + D(x)) + (1 + x + D(y)) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + (1 + D(x) + y) + (1 + (1 + x + D(y)) + (1 + y + 2)) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + (1 + (1 + y + (1 + x + (1 + y + 1))) + D(x)) + (1 + (1 + (1 + x + y) + (1 + x)) + D(y)) :|: z = 1 + x + y, x >= 0, y >= 0
D: runtime: ?, size: O(n2) [23·z + 12·z2] |
D(z) -{ 1 }→ 1 :|: z = 4
D(z) -{ 1 }→ 0 :|: z = 3
D(z) -{ 1 }→ 1 + D(z - 1) :|: z - 1 >= 0
D(z) -{ 1 }→ 1 + D(x) + D(y) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + D(z - 1) + (z - 1) :|: z - 1 >= 0
D(z) -{ 1 }→ 1 + (1 + y + D(x)) + (1 + x + D(y)) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + (1 + D(x) + y) + (1 + (1 + x + D(y)) + (1 + y + 2)) :|: z = 1 + x + y, x >= 0, y >= 0
D(z) -{ 1 }→ 1 + (1 + (1 + y + (1 + x + (1 + y + 1))) + D(x)) + (1 + (1 + (1 + x + y) + (1 + x)) + D(y)) :|: z = 1 + x + y, x >= 0, y >= 0
D: runtime: O(n1) [1 + z], size: O(n2) [23·z + 12·z2] |