* Step 1: Sum WORST_CASE(Omega(n^1),O(n^4))
    + Considered Problem:
        - Strict TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            and(x,false()) -> false()
            and(x,true()) -> x
            bs(l(x)) -> true()
            bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
            ge(x,#()) -> true()
            ge(#(),0(x)) -> ge(#(),x)
            ge(#(),1(x)) -> false()
            ge(0(x),0(y)) -> ge(x,y)
            ge(0(x),1(y)) -> not(ge(y,x))
            ge(1(x),0(y)) -> ge(x,y)
            ge(1(x),1(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            not(false()) -> true()
            not(true()) -> false()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            val(l(x)) -> x
            val(n(x,y,z)) -> x
            wb(l(x)) -> true()
            wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                               ,and(wb(y),wb(z)))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1} / {#/0,1/1,false/0,l/1,n/3,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+,-,0,and,bs,ge,if,max,min,not,size,val
            ,wb} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            and(x,false()) -> false()
            and(x,true()) -> x
            bs(l(x)) -> true()
            bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
            ge(x,#()) -> true()
            ge(#(),0(x)) -> ge(#(),x)
            ge(#(),1(x)) -> false()
            ge(0(x),0(y)) -> ge(x,y)
            ge(0(x),1(y)) -> not(ge(y,x))
            ge(1(x),0(y)) -> ge(x,y)
            ge(1(x),1(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            not(false()) -> true()
            not(true()) -> false()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            val(l(x)) -> x
            val(n(x,y,z)) -> x
            wb(l(x)) -> true()
            wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                               ,and(wb(y),wb(z)))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1} / {#/0,1/1,false/0,l/1,n/3,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+,-,0,and,bs,ge,if,max,min,not,size,val
            ,wb} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          +(x,y){x -> 1(x),y -> 1(y)} =
            +(1(x),1(y)) ->^+ 0(+(+(x,y),1(#())))
              = C[+(x,y) = +(x,y){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            and(x,false()) -> false()
            and(x,true()) -> x
            bs(l(x)) -> true()
            bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
            ge(x,#()) -> true()
            ge(#(),0(x)) -> ge(#(),x)
            ge(#(),1(x)) -> false()
            ge(0(x),0(y)) -> ge(x,y)
            ge(0(x),1(y)) -> not(ge(y,x))
            ge(1(x),0(y)) -> ge(x,y)
            ge(1(x),1(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            not(false()) -> true()
            not(true()) -> false()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            val(l(x)) -> x
            val(n(x,y,z)) -> x
            wb(l(x)) -> true()
            wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                               ,and(wb(y),wb(z)))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1} / {#/0,1/1,false/0,l/1,n/3,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+,-,0,and,bs,ge,if,max,min,not,size,val
            ,wb} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          +#(x,#()) -> c_1()
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(#(),x) -> c_3()
          +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
          -#(x,#()) -> c_8()
          -#(#(),x) -> c_9()
          -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
          -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
          -#(1(x),0(y)) -> c_12(-#(x,y))
          -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
          0#(#()) -> c_14()
          and#(x,false()) -> c_15()
          and#(x,true()) -> c_16()
          bs#(l(x)) -> c_17()
          bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
                               ,and#(ge(x,max(y)),ge(min(z),x))
                               ,ge#(x,max(y))
                               ,max#(y)
                               ,ge#(min(z),x)
                               ,min#(z)
                               ,and#(bs(y),bs(z))
                               ,bs#(y)
                               ,bs#(z))
          ge#(x,#()) -> c_19()
          ge#(#(),0(x)) -> c_20(ge#(#(),x))
          ge#(#(),1(x)) -> c_21()
          ge#(0(x),0(y)) -> c_22(ge#(x,y))
          ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
          ge#(1(x),0(y)) -> c_24(ge#(x,y))
          ge#(1(x),1(y)) -> c_25(ge#(x,y))
          if#(false(),x,y) -> c_26()
          if#(true(),x,y) -> c_27()
          max#(l(x)) -> c_28()
          max#(n(x,y,z)) -> c_29(max#(z))
          min#(l(x)) -> c_30()
          min#(n(x,y,z)) -> c_31(min#(y))
          not#(false()) -> c_32()
          not#(true()) -> c_33()
          size#(l(x)) -> c_34()
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          val#(l(x)) -> c_36()
          val#(n(x,y,z)) -> c_37()
          wb#(l(x)) -> c_38()
          wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z))
                                       ,ge(1(#()),-(size(y),size(z)))
                                       ,ge(1(#()),-(size(z),size(y))))
                                    ,and(wb(y),wb(z)))
                               ,if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                               ,ge#(size(y),size(z))
                               ,size#(y)
                               ,size#(z)
                               ,ge#(1(#()),-(size(y),size(z)))
                               ,-#(size(y),size(z))
                               ,size#(y)
                               ,size#(z)
                               ,ge#(1(#()),-(size(z),size(y)))
                               ,-#(size(z),size(y))
                               ,size#(z)
                               ,size#(y)
                               ,and#(wb(y),wb(z))
                               ,wb#(y)
                               ,wb#(z))
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict DPs:
            +#(x,#()) -> c_1()
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(#(),x) -> c_3()
            +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
            -#(x,#()) -> c_8()
            -#(#(),x) -> c_9()
            -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
            0#(#()) -> c_14()
            and#(x,false()) -> c_15()
            and#(x,true()) -> c_16()
            bs#(l(x)) -> c_17()
            bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
                                 ,and#(ge(x,max(y)),ge(min(z),x))
                                 ,ge#(x,max(y))
                                 ,max#(y)
                                 ,ge#(min(z),x)
                                 ,min#(z)
                                 ,and#(bs(y),bs(z))
                                 ,bs#(y)
                                 ,bs#(z))
            ge#(x,#()) -> c_19()
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(#(),1(x)) -> c_21()
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            if#(false(),x,y) -> c_26()
            if#(true(),x,y) -> c_27()
            max#(l(x)) -> c_28()
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(l(x)) -> c_30()
            min#(n(x,y,z)) -> c_31(min#(y))
            not#(false()) -> c_32()
            not#(true()) -> c_33()
            size#(l(x)) -> c_34()
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            val#(l(x)) -> c_36()
            val#(n(x,y,z)) -> c_37()
            wb#(l(x)) -> c_38()
            wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z))
                                         ,ge(1(#()),-(size(y),size(z)))
                                         ,ge(1(#()),-(size(z),size(y))))
                                      ,and(wb(y),wb(z)))
                                 ,if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                                 ,ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,and#(wb(y),wb(z))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            and(x,false()) -> false()
            and(x,true()) -> x
            bs(l(x)) -> true()
            bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
            ge(x,#()) -> true()
            ge(#(),0(x)) -> ge(#(),x)
            ge(#(),1(x)) -> false()
            ge(0(x),0(y)) -> ge(x,y)
            ge(0(x),1(y)) -> not(ge(y,x))
            ge(1(x),0(y)) -> ge(x,y)
            ge(1(x),1(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            not(false()) -> true()
            not(true()) -> false()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            val(l(x)) -> x
            val(n(x,y,z)) -> x
            wb(l(x)) -> true()
            wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                               ,and(wb(y),wb(z)))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/2
            ,c_5/1,c_6/1,c_7/3,c_8/0,c_9/0,c_10/2,c_11/2,c_12/1,c_13/2,c_14/0,c_15/0,c_16/0,c_17/0,c_18/9,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/2,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/16}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          +(x,#()) -> x
          +(x,+(y,z)) -> +(+(x,y),z)
          +(#(),x) -> x
          +(0(x),0(y)) -> 0(+(x,y))
          +(0(x),1(y)) -> 1(+(x,y))
          +(1(x),0(y)) -> 1(+(x,y))
          +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
          -(x,#()) -> x
          -(#(),x) -> #()
          -(0(x),0(y)) -> 0(-(x,y))
          -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
          -(1(x),0(y)) -> 1(-(x,y))
          -(1(x),1(y)) -> 0(-(x,y))
          0(#()) -> #()
          and(x,false()) -> false()
          and(x,true()) -> x
          bs(l(x)) -> true()
          bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
          ge(x,#()) -> true()
          ge(#(),0(x)) -> ge(#(),x)
          ge(#(),1(x)) -> false()
          ge(0(x),0(y)) -> ge(x,y)
          ge(0(x),1(y)) -> not(ge(y,x))
          ge(1(x),0(y)) -> ge(x,y)
          ge(1(x),1(y)) -> ge(x,y)
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          max(l(x)) -> x
          max(n(x,y,z)) -> max(z)
          min(l(x)) -> x
          min(n(x,y,z)) -> min(y)
          not(false()) -> true()
          not(true()) -> false()
          size(l(x)) -> 1(#())
          size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          wb(l(x)) -> true()
          wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                             ,and(wb(y),wb(z)))
          +#(x,#()) -> c_1()
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(#(),x) -> c_3()
          +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
          -#(x,#()) -> c_8()
          -#(#(),x) -> c_9()
          -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
          -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
          -#(1(x),0(y)) -> c_12(-#(x,y))
          -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
          0#(#()) -> c_14()
          and#(x,false()) -> c_15()
          and#(x,true()) -> c_16()
          bs#(l(x)) -> c_17()
          bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
                               ,and#(ge(x,max(y)),ge(min(z),x))
                               ,ge#(x,max(y))
                               ,max#(y)
                               ,ge#(min(z),x)
                               ,min#(z)
                               ,and#(bs(y),bs(z))
                               ,bs#(y)
                               ,bs#(z))
          ge#(x,#()) -> c_19()
          ge#(#(),0(x)) -> c_20(ge#(#(),x))
          ge#(#(),1(x)) -> c_21()
          ge#(0(x),0(y)) -> c_22(ge#(x,y))
          ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
          ge#(1(x),0(y)) -> c_24(ge#(x,y))
          ge#(1(x),1(y)) -> c_25(ge#(x,y))
          if#(false(),x,y) -> c_26()
          if#(true(),x,y) -> c_27()
          max#(l(x)) -> c_28()
          max#(n(x,y,z)) -> c_29(max#(z))
          min#(l(x)) -> c_30()
          min#(n(x,y,z)) -> c_31(min#(y))
          not#(false()) -> c_32()
          not#(true()) -> c_33()
          size#(l(x)) -> c_34()
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          val#(l(x)) -> c_36()
          val#(n(x,y,z)) -> c_37()
          wb#(l(x)) -> c_38()
          wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z))
                                       ,ge(1(#()),-(size(y),size(z)))
                                       ,ge(1(#()),-(size(z),size(y))))
                                    ,and(wb(y),wb(z)))
                               ,if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                               ,ge#(size(y),size(z))
                               ,size#(y)
                               ,size#(z)
                               ,ge#(1(#()),-(size(y),size(z)))
                               ,-#(size(y),size(z))
                               ,size#(y)
                               ,size#(z)
                               ,ge#(1(#()),-(size(z),size(y)))
                               ,-#(size(z),size(y))
                               ,size#(z)
                               ,size#(y)
                               ,and#(wb(y),wb(z))
                               ,wb#(y)
                               ,wb#(z))
** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict DPs:
            +#(x,#()) -> c_1()
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(#(),x) -> c_3()
            +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
            -#(x,#()) -> c_8()
            -#(#(),x) -> c_9()
            -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
            0#(#()) -> c_14()
            and#(x,false()) -> c_15()
            and#(x,true()) -> c_16()
            bs#(l(x)) -> c_17()
            bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
                                 ,and#(ge(x,max(y)),ge(min(z),x))
                                 ,ge#(x,max(y))
                                 ,max#(y)
                                 ,ge#(min(z),x)
                                 ,min#(z)
                                 ,and#(bs(y),bs(z))
                                 ,bs#(y)
                                 ,bs#(z))
            ge#(x,#()) -> c_19()
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(#(),1(x)) -> c_21()
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            if#(false(),x,y) -> c_26()
            if#(true(),x,y) -> c_27()
            max#(l(x)) -> c_28()
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(l(x)) -> c_30()
            min#(n(x,y,z)) -> c_31(min#(y))
            not#(false()) -> c_32()
            not#(true()) -> c_33()
            size#(l(x)) -> c_34()
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            val#(l(x)) -> c_36()
            val#(n(x,y,z)) -> c_37()
            wb#(l(x)) -> c_38()
            wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z))
                                         ,ge(1(#()),-(size(y),size(z)))
                                         ,ge(1(#()),-(size(z),size(y))))
                                      ,and(wb(y),wb(z)))
                                 ,if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                                 ,ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,and#(wb(y),wb(z))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            and(x,false()) -> false()
            and(x,true()) -> x
            bs(l(x)) -> true()
            bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
            ge(x,#()) -> true()
            ge(#(),0(x)) -> ge(#(),x)
            ge(#(),1(x)) -> false()
            ge(0(x),0(y)) -> ge(x,y)
            ge(0(x),1(y)) -> not(ge(y,x))
            ge(1(x),0(y)) -> ge(x,y)
            ge(1(x),1(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            not(false()) -> true()
            not(true()) -> false()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            wb(l(x)) -> true()
            wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                               ,and(wb(y),wb(z)))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/2
            ,c_5/1,c_6/1,c_7/3,c_8/0,c_9/0,c_10/2,c_11/2,c_12/1,c_13/2,c_14/0,c_15/0,c_16/0,c_17/0,c_18/9,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/2,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/16}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,3,8,9,14,15,16,17,19,21,26,27,28,30,32,33,34,36,37,38}
        by application of
          Pre({1,3,8,9,14,15,16,17,19,21,26,27,28,30,32,33,34,36,37,38}) = {2,4,5,6,7,10,11,12,13,18,20,22,23,24,25
          ,29,31,35,39}.
        Here rules are labelled as follows:
          1: +#(x,#()) -> c_1()
          2: +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          3: +#(#(),x) -> c_3()
          4: +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
          5: +#(0(x),1(y)) -> c_5(+#(x,y))
          6: +#(1(x),0(y)) -> c_6(+#(x,y))
          7: +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
          8: -#(x,#()) -> c_8()
          9: -#(#(),x) -> c_9()
          10: -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
          11: -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
          12: -#(1(x),0(y)) -> c_12(-#(x,y))
          13: -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
          14: 0#(#()) -> c_14()
          15: and#(x,false()) -> c_15()
          16: and#(x,true()) -> c_16()
          17: bs#(l(x)) -> c_17()
          18: bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
                                   ,and#(ge(x,max(y)),ge(min(z),x))
                                   ,ge#(x,max(y))
                                   ,max#(y)
                                   ,ge#(min(z),x)
                                   ,min#(z)
                                   ,and#(bs(y),bs(z))
                                   ,bs#(y)
                                   ,bs#(z))
          19: ge#(x,#()) -> c_19()
          20: ge#(#(),0(x)) -> c_20(ge#(#(),x))
          21: ge#(#(),1(x)) -> c_21()
          22: ge#(0(x),0(y)) -> c_22(ge#(x,y))
          23: ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
          24: ge#(1(x),0(y)) -> c_24(ge#(x,y))
          25: ge#(1(x),1(y)) -> c_25(ge#(x,y))
          26: if#(false(),x,y) -> c_26()
          27: if#(true(),x,y) -> c_27()
          28: max#(l(x)) -> c_28()
          29: max#(n(x,y,z)) -> c_29(max#(z))
          30: min#(l(x)) -> c_30()
          31: min#(n(x,y,z)) -> c_31(min#(y))
          32: not#(false()) -> c_32()
          33: not#(true()) -> c_33()
          34: size#(l(x)) -> c_34()
          35: size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          36: val#(l(x)) -> c_36()
          37: val#(n(x,y,z)) -> c_37()
          38: wb#(l(x)) -> c_38()
          39: wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z))
                                           ,ge(1(#()),-(size(y),size(z)))
                                           ,ge(1(#()),-(size(z),size(y))))
                                        ,and(wb(y),wb(z)))
                                   ,if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                                   ,ge#(size(y),size(z))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(y),size(z)))
                                   ,-#(size(y),size(z))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(z),size(y)))
                                   ,-#(size(z),size(y))
                                   ,size#(z)
                                   ,size#(y)
                                   ,and#(wb(y),wb(z))
                                   ,wb#(y)
                                   ,wb#(z))
** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
            -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
            bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
                                 ,and#(ge(x,max(y)),ge(min(z),x))
                                 ,ge#(x,max(y))
                                 ,max#(y)
                                 ,ge#(min(z),x)
                                 ,min#(z)
                                 ,and#(bs(y),bs(z))
                                 ,bs#(y)
                                 ,bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z))
                                         ,ge(1(#()),-(size(y),size(z)))
                                         ,ge(1(#()),-(size(z),size(y))))
                                      ,and(wb(y),wb(z)))
                                 ,if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                                 ,ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,and#(wb(y),wb(z))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak DPs:
            +#(x,#()) -> c_1()
            +#(#(),x) -> c_3()
            -#(x,#()) -> c_8()
            -#(#(),x) -> c_9()
            0#(#()) -> c_14()
            and#(x,false()) -> c_15()
            and#(x,true()) -> c_16()
            bs#(l(x)) -> c_17()
            ge#(x,#()) -> c_19()
            ge#(#(),1(x)) -> c_21()
            if#(false(),x,y) -> c_26()
            if#(true(),x,y) -> c_27()
            max#(l(x)) -> c_28()
            min#(l(x)) -> c_30()
            not#(false()) -> c_32()
            not#(true()) -> c_33()
            size#(l(x)) -> c_34()
            val#(l(x)) -> c_36()
            val#(n(x,y,z)) -> c_37()
            wb#(l(x)) -> c_38()
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            and(x,false()) -> false()
            and(x,true()) -> x
            bs(l(x)) -> true()
            bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
            ge(x,#()) -> true()
            ge(#(),0(x)) -> ge(#(),x)
            ge(#(),1(x)) -> false()
            ge(0(x),0(y)) -> ge(x,y)
            ge(0(x),1(y)) -> not(ge(y,x))
            ge(1(x),0(y)) -> ge(x,y)
            ge(1(x),1(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            not(false()) -> true()
            not(true()) -> false()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            wb(l(x)) -> true()
            wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                               ,and(wb(y),wb(z)))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/2
            ,c_5/1,c_6/1,c_7/3,c_8/0,c_9/0,c_10/2,c_11/2,c_12/1,c_13/2,c_14/0,c_15/0,c_16/0,c_17/0,c_18/9,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/2,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/16}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:+#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
             -->_1 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
             -->_2 +#(#(),x) -> c_3():21
             -->_1 +#(#(),x) -> c_3():21
             -->_2 +#(x,#()) -> c_1():20
             -->_1 +#(x,#()) -> c_1():20
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          2:S:+#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 0#(#()) -> c_14():24
             -->_2 +#(#(),x) -> c_3():21
             -->_2 +#(x,#()) -> c_1():20
             -->_2 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          3:S:+#(0(x),1(y)) -> c_5(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(#(),x) -> c_3():21
             -->_1 +#(x,#()) -> c_1():20
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          4:S:+#(1(x),0(y)) -> c_6(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(#(),x) -> c_3():21
             -->_1 +#(x,#()) -> c_1():20
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          5:S:+#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
             -->_1 0#(#()) -> c_14():24
             -->_3 +#(#(),x) -> c_3():21
             -->_2 +#(#(),x) -> c_3():21
             -->_3 +#(x,#()) -> c_1():20
             -->_3 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_3 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_3 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_3 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
             -->_3 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          6:S:-#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
             -->_2 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_1 0#(#()) -> c_14():24
             -->_2 -#(#(),x) -> c_9():23
             -->_2 -#(x,#()) -> c_8():22
             -->_2 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
          
          7:S:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
             -->_2 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
             -->_1 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_2 -#(#(),x) -> c_9():23
             -->_1 -#(#(),x) -> c_9():23
             -->_2 -#(x,#()) -> c_8():22
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_2 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
          
          8:S:-#(1(x),0(y)) -> c_12(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
             -->_1 -#(#(),x) -> c_9():23
             -->_1 -#(x,#()) -> c_8():22
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_1 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
          
          9:S:-#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
             -->_1 0#(#()) -> c_14():24
             -->_2 -#(#(),x) -> c_9():23
             -->_2 -#(x,#()) -> c_8():22
             -->_2 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_2 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
          
          10:S:bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
                                    ,and#(ge(x,max(y)),ge(min(z),x))
                                    ,ge#(x,max(y))
                                    ,max#(y)
                                    ,ge#(min(z),x)
                                    ,min#(z)
                                    ,and#(bs(y),bs(z))
                                    ,bs#(y)
                                    ,bs#(z))
             -->_6 min#(n(x,y,z)) -> c_31(min#(y)):17
             -->_4 max#(n(x,y,z)) -> c_29(max#(z)):16
             -->_5 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_5 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_5 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
             -->_3 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
             -->_5 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_5 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_6 min#(l(x)) -> c_30():33
             -->_4 max#(l(x)) -> c_28():32
             -->_5 ge#(#(),1(x)) -> c_21():29
             -->_3 ge#(#(),1(x)) -> c_21():29
             -->_5 ge#(x,#()) -> c_19():28
             -->_3 ge#(x,#()) -> c_19():28
             -->_9 bs#(l(x)) -> c_17():27
             -->_8 bs#(l(x)) -> c_17():27
             -->_7 and#(x,true()) -> c_16():26
             -->_2 and#(x,true()) -> c_16():26
             -->_1 and#(x,true()) -> c_16():26
             -->_7 and#(x,false()) -> c_15():25
             -->_2 and#(x,false()) -> c_15():25
             -->_1 and#(x,false()) -> c_15():25
             -->_9 bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
                                        ,and#(ge(x,max(y)),ge(min(z),x))
                                        ,ge#(x,max(y))
                                        ,max#(y)
                                        ,ge#(min(z),x)
                                        ,min#(z)
                                        ,and#(bs(y),bs(z))
                                        ,bs#(y)
                                        ,bs#(z)):10
             -->_8 bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
                                        ,and#(ge(x,max(y)),ge(min(z),x))
                                        ,ge#(x,max(y))
                                        ,max#(y)
                                        ,ge#(min(z),x)
                                        ,min#(z)
                                        ,and#(bs(y),bs(z))
                                        ,bs#(y)
                                        ,bs#(z)):10
          
          11:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),1(x)) -> c_21():29
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
          
          12:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
             -->_1 ge#(#(),1(x)) -> c_21():29
             -->_1 ge#(x,#()) -> c_19():28
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
          
          13:S:ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
             -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 not#(true()) -> c_33():35
             -->_1 not#(false()) -> c_32():34
             -->_2 ge#(#(),1(x)) -> c_21():29
             -->_2 ge#(x,#()) -> c_19():28
             -->_2 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
             -->_2 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_2 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
          
          14:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(#(),1(x)) -> c_21():29
             -->_1 ge#(x,#()) -> c_19():28
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
          
          15:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(#(),1(x)) -> c_21():29
             -->_1 ge#(x,#()) -> c_19():28
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
          
          16:S:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(l(x)) -> c_28():32
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):16
          
          17:S:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(l(x)) -> c_30():33
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):17
          
          18:S:size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
             -->_4 size#(l(x)) -> c_34():36
             -->_3 size#(l(x)) -> c_34():36
             -->_2 +#(#(),x) -> c_3():21
             -->_1 +#(#(),x) -> c_3():21
             -->_2 +#(x,#()) -> c_1():20
             -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          19:S:wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z))
                                            ,ge(1(#()),-(size(y),size(z)))
                                            ,ge(1(#()),-(size(z),size(y))))
                                         ,and(wb(y),wb(z)))
                                    ,if#(ge(size(y),size(z))
                                        ,ge(1(#()),-(size(y),size(z)))
                                        ,ge(1(#()),-(size(z),size(y))))
                                    ,ge#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(y),size(z)))
                                    ,-#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(z),size(y)))
                                    ,-#(size(z),size(y))
                                    ,size#(z)
                                    ,size#(y)
                                    ,and#(wb(y),wb(z))
                                    ,wb#(y)
                                    ,wb#(z))
             -->_16 wb#(l(x)) -> c_38():39
             -->_15 wb#(l(x)) -> c_38():39
             -->_13 size#(l(x)) -> c_34():36
             -->_12 size#(l(x)) -> c_34():36
             -->_9 size#(l(x)) -> c_34():36
             -->_8 size#(l(x)) -> c_34():36
             -->_5 size#(l(x)) -> c_34():36
             -->_4 size#(l(x)) -> c_34():36
             -->_2 if#(true(),x,y) -> c_27():31
             -->_2 if#(false(),x,y) -> c_26():30
             -->_3 ge#(#(),1(x)) -> c_21():29
             -->_10 ge#(x,#()) -> c_19():28
             -->_6 ge#(x,#()) -> c_19():28
             -->_3 ge#(x,#()) -> c_19():28
             -->_14 and#(x,true()) -> c_16():26
             -->_1 and#(x,true()) -> c_16():26
             -->_14 and#(x,false()) -> c_15():25
             -->_1 and#(x,false()) -> c_15():25
             -->_11 -#(#(),x) -> c_9():23
             -->_7 -#(#(),x) -> c_9():23
             -->_11 -#(x,#()) -> c_8():22
             -->_7 -#(x,#()) -> c_8():22
             -->_16 wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z))
                                                 ,ge(1(#()),-(size(y),size(z)))
                                                 ,ge(1(#()),-(size(z),size(y))))
                                              ,and(wb(y),wb(z)))
                                         ,if#(ge(size(y),size(z))
                                             ,ge(1(#()),-(size(y),size(z)))
                                             ,ge(1(#()),-(size(z),size(y))))
                                         ,ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,and#(wb(y),wb(z))
                                         ,wb#(y)
                                         ,wb#(z)):19
             -->_15 wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z))
                                                 ,ge(1(#()),-(size(y),size(z)))
                                                 ,ge(1(#()),-(size(z),size(y))))
                                              ,and(wb(y),wb(z)))
                                         ,if#(ge(size(y),size(z))
                                             ,ge(1(#()),-(size(y),size(z)))
                                             ,ge(1(#()),-(size(z),size(y))))
                                         ,ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,and#(wb(y),wb(z))
                                         ,wb#(y)
                                         ,wb#(z)):19
             -->_13 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_12 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_9 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_8 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_5 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_10 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_6 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_10 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_6 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_3 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_11 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
             -->_7 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
             -->_11 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_7 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_11 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_7 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_11 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
             -->_7 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
          
          20:W:+#(x,#()) -> c_1()
             
          
          21:W:+#(#(),x) -> c_3()
             
          
          22:W:-#(x,#()) -> c_8()
             
          
          23:W:-#(#(),x) -> c_9()
             
          
          24:W:0#(#()) -> c_14()
             
          
          25:W:and#(x,false()) -> c_15()
             
          
          26:W:and#(x,true()) -> c_16()
             
          
          27:W:bs#(l(x)) -> c_17()
             
          
          28:W:ge#(x,#()) -> c_19()
             
          
          29:W:ge#(#(),1(x)) -> c_21()
             
          
          30:W:if#(false(),x,y) -> c_26()
             
          
          31:W:if#(true(),x,y) -> c_27()
             
          
          32:W:max#(l(x)) -> c_28()
             
          
          33:W:min#(l(x)) -> c_30()
             
          
          34:W:not#(false()) -> c_32()
             
          
          35:W:not#(true()) -> c_33()
             
          
          36:W:size#(l(x)) -> c_34()
             
          
          37:W:val#(l(x)) -> c_36()
             
          
          38:W:val#(n(x,y,z)) -> c_37()
             
          
          39:W:wb#(l(x)) -> c_38()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          38: val#(n(x,y,z)) -> c_37()
          37: val#(l(x)) -> c_36()
          30: if#(false(),x,y) -> c_26()
          31: if#(true(),x,y) -> c_27()
          39: wb#(l(x)) -> c_38()
          36: size#(l(x)) -> c_34()
          25: and#(x,false()) -> c_15()
          26: and#(x,true()) -> c_16()
          27: bs#(l(x)) -> c_17()
          34: not#(false()) -> c_32()
          35: not#(true()) -> c_33()
          28: ge#(x,#()) -> c_19()
          29: ge#(#(),1(x)) -> c_21()
          32: max#(l(x)) -> c_28()
          33: min#(l(x)) -> c_30()
          22: -#(x,#()) -> c_8()
          23: -#(#(),x) -> c_9()
          20: +#(x,#()) -> c_1()
          21: +#(#(),x) -> c_3()
          24: 0#(#()) -> c_14()
** Step 1.b:5: SimplifyRHS WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
            -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
            bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
                                 ,and#(ge(x,max(y)),ge(min(z),x))
                                 ,ge#(x,max(y))
                                 ,max#(y)
                                 ,ge#(min(z),x)
                                 ,min#(z)
                                 ,and#(bs(y),bs(z))
                                 ,bs#(y)
                                 ,bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z))
                                         ,ge(1(#()),-(size(y),size(z)))
                                         ,ge(1(#()),-(size(z),size(y))))
                                      ,and(wb(y),wb(z)))
                                 ,if#(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                                 ,ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,and#(wb(y),wb(z))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            and(x,false()) -> false()
            and(x,true()) -> x
            bs(l(x)) -> true()
            bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
            ge(x,#()) -> true()
            ge(#(),0(x)) -> ge(#(),x)
            ge(#(),1(x)) -> false()
            ge(0(x),0(y)) -> ge(x,y)
            ge(0(x),1(y)) -> not(ge(y,x))
            ge(1(x),0(y)) -> ge(x,y)
            ge(1(x),1(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            not(false()) -> true()
            not(true()) -> false()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            wb(l(x)) -> true()
            wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                               ,and(wb(y),wb(z)))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/2
            ,c_5/1,c_6/1,c_7/3,c_8/0,c_9/0,c_10/2,c_11/2,c_12/1,c_13/2,c_14/0,c_15/0,c_16/0,c_17/0,c_18/9,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/2,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/16}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:+#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
             -->_1 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          2:S:+#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          3:S:+#(0(x),1(y)) -> c_5(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          4:S:+#(1(x),0(y)) -> c_6(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          5:S:+#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y))
             -->_3 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_3 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_3 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_3 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
             -->_3 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          6:S:-#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y))
             -->_2 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_2 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
          
          7:S:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
             -->_2 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
             -->_1 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_2 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
          
          8:S:-#(1(x),0(y)) -> c_12(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_1 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
          
          9:S:-#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y))
             -->_2 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_2 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
          
          10:S:bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
                                    ,and#(ge(x,max(y)),ge(min(z),x))
                                    ,ge#(x,max(y))
                                    ,max#(y)
                                    ,ge#(min(z),x)
                                    ,min#(z)
                                    ,and#(bs(y),bs(z))
                                    ,bs#(y)
                                    ,bs#(z))
             -->_6 min#(n(x,y,z)) -> c_31(min#(y)):17
             -->_4 max#(n(x,y,z)) -> c_29(max#(z)):16
             -->_5 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_5 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_5 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
             -->_3 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
             -->_5 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_5 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_9 bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
                                        ,and#(ge(x,max(y)),ge(min(z),x))
                                        ,ge#(x,max(y))
                                        ,max#(y)
                                        ,ge#(min(z),x)
                                        ,min#(z)
                                        ,and#(bs(y),bs(z))
                                        ,bs#(y)
                                        ,bs#(z)):10
             -->_8 bs#(n(x,y,z)) -> c_18(and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
                                        ,and#(ge(x,max(y)),ge(min(z),x))
                                        ,ge#(x,max(y))
                                        ,max#(y)
                                        ,ge#(min(z),x)
                                        ,min#(z)
                                        ,and#(bs(y),bs(z))
                                        ,bs#(y)
                                        ,bs#(z)):10
          
          11:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
          
          12:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
          
          13:S:ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x))
             -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_2 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
             -->_2 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_2 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
          
          14:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
          
          15:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
          
          16:S:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):16
          
          17:S:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):17
          
          18:S:size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
             -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_2 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(0#(+(+(x,y),1(#()))),+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(0#(+(x,y)),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          19:S:wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z))
                                            ,ge(1(#()),-(size(y),size(z)))
                                            ,ge(1(#()),-(size(z),size(y))))
                                         ,and(wb(y),wb(z)))
                                    ,if#(ge(size(y),size(z))
                                        ,ge(1(#()),-(size(y),size(z)))
                                        ,ge(1(#()),-(size(z),size(y))))
                                    ,ge#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(y),size(z)))
                                    ,-#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(z),size(y)))
                                    ,-#(size(z),size(y))
                                    ,size#(z)
                                    ,size#(y)
                                    ,and#(wb(y),wb(z))
                                    ,wb#(y)
                                    ,wb#(z))
             -->_16 wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z))
                                                 ,ge(1(#()),-(size(y),size(z)))
                                                 ,ge(1(#()),-(size(z),size(y))))
                                              ,and(wb(y),wb(z)))
                                         ,if#(ge(size(y),size(z))
                                             ,ge(1(#()),-(size(y),size(z)))
                                             ,ge(1(#()),-(size(z),size(y))))
                                         ,ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,and#(wb(y),wb(z))
                                         ,wb#(y)
                                         ,wb#(z)):19
             -->_15 wb#(n(x,y,z)) -> c_39(and#(if(ge(size(y),size(z))
                                                 ,ge(1(#()),-(size(y),size(z)))
                                                 ,ge(1(#()),-(size(z),size(y))))
                                              ,and(wb(y),wb(z)))
                                         ,if#(ge(size(y),size(z))
                                             ,ge(1(#()),-(size(y),size(z)))
                                             ,ge(1(#()),-(size(z),size(y))))
                                         ,ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,and#(wb(y),wb(z))
                                         ,wb#(y)
                                         ,wb#(z)):19
             -->_13 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_12 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_9 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_8 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_5 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_10 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_6 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_10 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_6 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_3 ge#(0(x),1(y)) -> c_23(not#(ge(y,x)),ge#(y,x)):13
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_11 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
             -->_7 -#(1(x),1(y)) -> c_13(0#(-(x,y)),-#(x,y)):9
             -->_11 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_7 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_11 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_7 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_11 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
             -->_7 -#(0(x),0(y)) -> c_10(0#(-(x,y)),-#(x,y)):6
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          +#(0(x),0(y)) -> c_4(+#(x,y))
          +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
          -#(0(x),0(y)) -> c_10(-#(x,y))
          -#(1(x),1(y)) -> c_13(-#(x,y))
          bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
          ge#(0(x),1(y)) -> c_23(ge#(y,x))
          wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                               ,size#(y)
                               ,size#(z)
                               ,ge#(1(#()),-(size(y),size(z)))
                               ,-#(size(y),size(z))
                               ,size#(y)
                               ,size#(z)
                               ,ge#(1(#()),-(size(z),size(y)))
                               ,-#(size(z),size(y))
                               ,size#(z)
                               ,size#(y)
                               ,wb#(y)
                               ,wb#(z))
** Step 1.b:6: UsableRules WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            and(x,false()) -> false()
            and(x,true()) -> x
            bs(l(x)) -> true()
            bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z)))
            ge(x,#()) -> true()
            ge(#(),0(x)) -> ge(#(),x)
            ge(#(),1(x)) -> false()
            ge(0(x),0(y)) -> ge(x,y)
            ge(0(x),1(y)) -> not(ge(y,x))
            ge(1(x),0(y)) -> ge(x,y)
            ge(1(x),1(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            not(false()) -> true()
            not(true()) -> false()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
            wb(l(x)) -> true()
            wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(1(#()),-(size(y),size(z))),ge(1(#()),-(size(z),size(y))))
                               ,and(wb(y),wb(z)))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/13}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          +(x,#()) -> x
          +(x,+(y,z)) -> +(+(x,y),z)
          +(#(),x) -> x
          +(0(x),0(y)) -> 0(+(x,y))
          +(0(x),1(y)) -> 1(+(x,y))
          +(1(x),0(y)) -> 1(+(x,y))
          +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
          -(x,#()) -> x
          -(#(),x) -> #()
          -(0(x),0(y)) -> 0(-(x,y))
          -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
          -(1(x),0(y)) -> 1(-(x,y))
          -(1(x),1(y)) -> 0(-(x,y))
          0(#()) -> #()
          max(l(x)) -> x
          max(n(x,y,z)) -> max(z)
          min(l(x)) -> x
          min(n(x,y,z)) -> min(y)
          size(l(x)) -> 1(#())
          size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(0(x),0(y)) -> c_4(+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
          -#(0(x),0(y)) -> c_10(-#(x,y))
          -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
          -#(1(x),0(y)) -> c_12(-#(x,y))
          -#(1(x),1(y)) -> c_13(-#(x,y))
          bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
          ge#(#(),0(x)) -> c_20(ge#(#(),x))
          ge#(0(x),0(y)) -> c_22(ge#(x,y))
          ge#(0(x),1(y)) -> c_23(ge#(y,x))
          ge#(1(x),0(y)) -> c_24(ge#(x,y))
          ge#(1(x),1(y)) -> c_25(ge#(x,y))
          max#(n(x,y,z)) -> c_29(max#(z))
          min#(n(x,y,z)) -> c_31(min#(y))
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                               ,size#(y)
                               ,size#(z)
                               ,ge#(1(#()),-(size(y),size(z)))
                               ,-#(size(y),size(z))
                               ,size#(y)
                               ,size#(z)
                               ,ge#(1(#()),-(size(z),size(y)))
                               ,-#(size(z),size(y))
                               ,size#(z)
                               ,size#(y)
                               ,wb#(y)
                               ,wb#(z))
** Step 1.b:7: Decompose WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/13}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
              +#(0(x),0(y)) -> c_4(+#(x,y))
              +#(0(x),1(y)) -> c_5(+#(x,y))
              +#(1(x),0(y)) -> c_6(+#(x,y))
              +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
          - Weak DPs:
              -#(0(x),0(y)) -> c_10(-#(x,y))
              -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
              -#(1(x),0(y)) -> c_12(-#(x,y))
              -#(1(x),1(y)) -> c_13(-#(x,y))
              bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
              ge#(#(),0(x)) -> c_20(ge#(#(),x))
              ge#(0(x),0(y)) -> c_22(ge#(x,y))
              ge#(0(x),1(y)) -> c_23(ge#(y,x))
              ge#(1(x),0(y)) -> c_24(ge#(x,y))
              ge#(1(x),1(y)) -> c_25(ge#(x,y))
              max#(n(x,y,z)) -> c_29(max#(z))
              min#(n(x,y,z)) -> c_31(min#(y))
              size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
              wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(y),size(z)))
                                   ,-#(size(y),size(z))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(z),size(y)))
                                   ,-#(size(z),size(y))
                                   ,size#(z)
                                   ,size#(y)
                                   ,wb#(y)
                                   ,wb#(z))
          - Weak TRS:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              max(l(x)) -> x
              max(n(x,y,z)) -> max(z)
              min(l(x)) -> x
              min(n(x,y,z)) -> min(y)
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          - Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
              ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0
              ,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0
              ,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0
              ,c_35/4,c_36/0,c_37/0,c_38/0,c_39/13}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
              ,wb#} and constructors {#,1,false,l,n,true}
        
        Problem (S)
          - Strict DPs:
              -#(0(x),0(y)) -> c_10(-#(x,y))
              -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
              -#(1(x),0(y)) -> c_12(-#(x,y))
              -#(1(x),1(y)) -> c_13(-#(x,y))
              bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
              ge#(#(),0(x)) -> c_20(ge#(#(),x))
              ge#(0(x),0(y)) -> c_22(ge#(x,y))
              ge#(0(x),1(y)) -> c_23(ge#(y,x))
              ge#(1(x),0(y)) -> c_24(ge#(x,y))
              ge#(1(x),1(y)) -> c_25(ge#(x,y))
              max#(n(x,y,z)) -> c_29(max#(z))
              min#(n(x,y,z)) -> c_31(min#(y))
              size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
              wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(y),size(z)))
                                   ,-#(size(y),size(z))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(z),size(y)))
                                   ,-#(size(z),size(y))
                                   ,size#(z)
                                   ,size#(y)
                                   ,wb#(y)
                                   ,wb#(z))
          - Weak DPs:
              +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
              +#(0(x),0(y)) -> c_4(+#(x,y))
              +#(0(x),1(y)) -> c_5(+#(x,y))
              +#(1(x),0(y)) -> c_6(+#(x,y))
              +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
          - Weak TRS:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              max(l(x)) -> x
              max(n(x,y,z)) -> max(z)
              min(l(x)) -> x
              min(n(x,y,z)) -> min(y)
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          - Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
              ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0
              ,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0
              ,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0
              ,c_35/4,c_36/0,c_37/0,c_38/0,c_39/13}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
              ,wb#} and constructors {#,1,false,l,n,true}
*** Step 1.b:7.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/13}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:+#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          2:S:+#(0(x),0(y)) -> c_4(+#(x,y))
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
          
          3:S:+#(0(x),1(y)) -> c_5(+#(x,y))
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
          
          4:S:+#(1(x),0(y)) -> c_6(+#(x,y))
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
          
          5:S:+#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
          
          6:W:-#(0(x),0(y)) -> c_10(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):9
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):6
          
          7:W:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
             -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):6
             -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):9
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):9
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
          
          8:W:-#(1(x),0(y)) -> c_12(-#(x,y))
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):6
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):9
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):8
          
          9:W:-#(1(x),1(y)) -> c_13(-#(x,y))
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):6
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):9
          
          10:W:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
             -->_4 min#(n(x,y,z)) -> c_31(min#(y)):17
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):16
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):13
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):13
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):10
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):10
          
          11:W:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
          
          12:W:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):13
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
          
          13:W:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):13
          
          14:W:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):13
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
          
          15:W:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):13
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
          
          16:W:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):16
          
          17:W:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):17
          
          18:W:size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
          
          19:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(y),size(z)))
                                    ,-#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(z),size(y)))
                                    ,-#(size(z),size(y))
                                    ,size#(z)
                                    ,size#(y)
                                    ,wb#(y)
                                    ,wb#(z))
             -->_9 -#(0(x),0(y)) -> c_10(-#(x,y)):6
             -->_5 -#(0(x),0(y)) -> c_10(-#(x,y)):6
             -->_9 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_5 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):7
             -->_9 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_5 -#(1(x),0(y)) -> c_12(-#(x,y)):8
             -->_9 -#(1(x),1(y)) -> c_13(-#(x,y)):9
             -->_5 -#(1(x),1(y)) -> c_13(-#(x,y)):9
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):11
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):12
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):13
             -->_8 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):14
             -->_8 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):15
             -->_11 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_10 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_7 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_6 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_2 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):19
             -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):19
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          10: bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
          15: ge#(1(x),1(y)) -> c_25(ge#(x,y))
          14: ge#(1(x),0(y)) -> c_24(ge#(x,y))
          13: ge#(0(x),1(y)) -> c_23(ge#(y,x))
          12: ge#(0(x),0(y)) -> c_22(ge#(x,y))
          11: ge#(#(),0(x)) -> c_20(ge#(#(),x))
          16: max#(n(x,y,z)) -> c_29(max#(z))
          17: min#(n(x,y,z)) -> c_31(min#(y))
          6: -#(0(x),0(y)) -> c_10(-#(x,y))
          9: -#(1(x),1(y)) -> c_13(-#(x,y))
          8: -#(1(x),0(y)) -> c_12(-#(x,y))
          7: -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
*** Step 1.b:7.a:2: SimplifyRHS WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/13}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:+#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          2:S:+#(0(x),0(y)) -> c_4(+#(x,y))
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
          
          3:S:+#(0(x),1(y)) -> c_5(+#(x,y))
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
          
          4:S:+#(1(x),0(y)) -> c_6(+#(x,y))
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
          
          5:S:+#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
          
          18:W:size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
          
          19:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(y),size(z)))
                                    ,-#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(z),size(y)))
                                    ,-#(size(z),size(y))
                                    ,size#(z)
                                    ,size#(y)
                                    ,wb#(y)
                                    ,wb#(z))
             -->_11 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_10 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_7 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_6 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_2 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):18
             -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):19
             -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):19
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
*** Step 1.b:7.a:3: UsableRules WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          +(x,#()) -> x
          +(x,+(y,z)) -> +(+(x,y),z)
          +(#(),x) -> x
          +(0(x),0(y)) -> 0(+(x,y))
          +(0(x),1(y)) -> 1(+(x,y))
          +(1(x),0(y)) -> 1(+(x,y))
          +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
          0(#()) -> #()
          size(l(x)) -> 1(#())
          size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(0(x),0(y)) -> c_4(+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
*** Step 1.b:7.a:4: DecomposeDG WORST_CASE(?,O(n^4))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        and a lower component
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(0(x),0(y)) -> c_4(+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        Further, following extension rules are added to the lower component.
          wb#(n(x,y,z)) -> size#(y)
          wb#(n(x,y,z)) -> size#(z)
          wb#(n(x,y,z)) -> wb#(y)
          wb#(n(x,y,z)) -> wb#(z)
**** Step 1.b:7.a:4.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:7.a:4.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_39) = {7,8}
        
        Following symbols are considered usable:
          {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
        TcT has computed the following interpretation:
              p(#) = [0]                                             
              p(+) = [1] x2 + [0]                                    
              p(-) = [0]                                             
              p(0) = [0]                                             
              p(1) = [1] x1 + [0]                                    
            p(and) = [0]                                             
             p(bs) = [0]                                             
          p(false) = [0]                                             
             p(ge) = [0]                                             
             p(if) = [0]                                             
              p(l) = [1] x1 + [0]                                    
            p(max) = [0]                                             
            p(min) = [0]                                             
              p(n) = [1] x1 + [1] x2 + [1] x3 + [4]                  
            p(not) = [0]                                             
           p(size) = [0]                                             
           p(true) = [0]                                             
            p(val) = [0]                                             
             p(wb) = [0]                                             
             p(+#) = [0]                                             
             p(-#) = [0]                                             
             p(0#) = [0]                                             
           p(and#) = [0]                                             
            p(bs#) = [1] x1 + [0]                                    
            p(ge#) = [2]                                             
            p(if#) = [1]                                             
           p(max#) = [1] x1 + [4]                                    
           p(min#) = [4] x1 + [2]                                    
           p(not#) = [1]                                             
          p(size#) = [1]                                             
           p(val#) = [1] x1 + [4]                                    
            p(wb#) = [4] x1 + [0]                                    
            p(c_1) = [2]                                             
            p(c_2) = [4] x1 + [1]                                    
            p(c_3) = [2]                                             
            p(c_4) = [1] x1 + [2]                                    
            p(c_5) = [1]                                             
            p(c_6) = [1] x1 + [0]                                    
            p(c_7) = [1] x1 + [2] x2 + [2]                           
            p(c_8) = [1]                                             
            p(c_9) = [4]                                             
           p(c_10) = [1] x1 + [1]                                    
           p(c_11) = [1] x1 + [1] x2 + [1]                           
           p(c_12) = [1]                                             
           p(c_13) = [4]                                             
           p(c_14) = [0]                                             
           p(c_15) = [1]                                             
           p(c_16) = [0]                                             
           p(c_17) = [2]                                             
           p(c_18) = [1] x3 + [1]                                    
           p(c_19) = [1]                                             
           p(c_20) = [1] x1 + [0]                                    
           p(c_21) = [1]                                             
           p(c_22) = [1] x1 + [8]                                    
           p(c_23) = [1]                                             
           p(c_24) = [1]                                             
           p(c_25) = [0]                                             
           p(c_26) = [1]                                             
           p(c_27) = [2]                                             
           p(c_28) = [0]                                             
           p(c_29) = [1] x1 + [2]                                    
           p(c_30) = [0]                                             
           p(c_31) = [2]                                             
           p(c_32) = [4]                                             
           p(c_33) = [0]                                             
           p(c_34) = [2]                                             
           p(c_35) = [8] x1 + [1] x4 + [0]                           
           p(c_36) = [1]                                             
           p(c_37) = [1]                                             
           p(c_38) = [1]                                             
           p(c_39) = [2] x1 + [7] x2 + [2] x4 + [1] x7 + [1] x8 + [3]
        
        Following rules are strictly oriented:
        wb#(n(x,y,z)) = [4] x + [4] y + [4] z + [16]                                             
                      > [4] y + [4] z + [14]                                                     
                      = c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        
        
        Following rules are (at-least) weakly oriented:
        
***** Step 1.b:7.a:4.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:7.a:4.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
             -->_8 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):1
             -->_7 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
***** Step 1.b:7.a:4.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 1.b:7.a:4.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          3: +#(0(x),1(y)) -> c_5(+#(x,y))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:7.a:4.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_2) = {1,2},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1,2},
          uargs(c_35) = {1,2,3,4}
        
        Following symbols are considered usable:
          {+,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
        TcT has computed the following interpretation:
              p(#) = 0                
              p(+) = x1 + x2          
              p(-) = 0                
              p(0) = x1               
              p(1) = 1 + x1           
            p(and) = 0                
             p(bs) = 0                
          p(false) = 0                
             p(ge) = 0                
             p(if) = 0                
              p(l) = 1                
            p(max) = 0                
            p(min) = 0                
              p(n) = 1 + x1 + x2 + x3 
            p(not) = 0                
           p(size) = x1               
           p(true) = 0                
            p(val) = 0                
             p(wb) = 0                
             p(+#) = x2               
             p(-#) = 0                
             p(0#) = 0                
           p(and#) = 0                
            p(bs#) = 0                
            p(ge#) = 0                
            p(if#) = 0                
           p(max#) = 0                
           p(min#) = 0                
           p(not#) = 0                
          p(size#) = 1 + x1 + x1^2    
           p(val#) = 0                
            p(wb#) = 1 + x1^2         
            p(c_1) = 0                
            p(c_2) = x1 + x2          
            p(c_3) = 0                
            p(c_4) = x1               
            p(c_5) = x1               
            p(c_6) = x1               
            p(c_7) = x1 + x2          
            p(c_8) = 0                
            p(c_9) = 0                
           p(c_10) = 0                
           p(c_11) = 0                
           p(c_12) = 0                
           p(c_13) = 0                
           p(c_14) = 0                
           p(c_15) = 0                
           p(c_16) = 0                
           p(c_17) = 0                
           p(c_18) = 0                
           p(c_19) = 0                
           p(c_20) = 0                
           p(c_21) = 0                
           p(c_22) = 0                
           p(c_23) = 0                
           p(c_24) = 0                
           p(c_25) = 0                
           p(c_26) = 0                
           p(c_27) = 0                
           p(c_28) = 0                
           p(c_29) = 0                
           p(c_30) = 0                
           p(c_31) = 0                
           p(c_32) = 0                
           p(c_33) = 0                
           p(c_34) = 0                
           p(c_35) = x1 + x2 + x3 + x4
           p(c_36) = 0                
           p(c_37) = 0                
           p(c_38) = 0                
           p(c_39) = 0                
        
        Following rules are strictly oriented:
        +#(0(x),1(y)) = 1 + y       
                      > y           
                      = c_5(+#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
           +#(x,+(y,z)) =  y + z                                                                    
                        >= y + z                                                                    
                        =  c_2(+#(+(x,y),z),+#(x,y))                                                
        
          +#(0(x),0(y)) =  y                                                                        
                        >= y                                                                        
                        =  c_4(+#(x,y))                                                             
        
          +#(1(x),0(y)) =  y                                                                        
                        >= y                                                                        
                        =  c_6(+#(x,y))                                                             
        
          +#(1(x),1(y)) =  1 + y                                                                    
                        >= 1 + y                                                                    
                        =  c_7(+#(+(x,y),1(#())),+#(x,y))                                           
        
        size#(n(x,y,z)) =  3 + 3*x + 2*x*y + 2*x*z + x^2 + 3*y + 2*y*z + y^2 + 3*z + z^2            
                        >= 3 + x + x^2 + 2*y + y^2                                                  
                        =  c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        
          wb#(n(x,y,z)) =  2 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2            
                        >= 1 + y + y^2                                                              
                        =  size#(y)                                                                 
        
          wb#(n(x,y,z)) =  2 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2            
                        >= 1 + z + z^2                                                              
                        =  size#(z)                                                                 
        
          wb#(n(x,y,z)) =  2 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2            
                        >= 1 + y^2                                                                  
                        =  wb#(y)                                                                   
        
          wb#(n(x,y,z)) =  2 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2            
                        >= 1 + z^2                                                                  
                        =  wb#(z)                                                                   
        
               +(x,#()) =  x                                                                        
                        >= x                                                                        
                        =  x                                                                        
        
            +(x,+(y,z)) =  x + y + z                                                                
                        >= x + y + z                                                                
                        =  +(+(x,y),z)                                                              
        
               +(#(),x) =  x                                                                        
                        >= x                                                                        
                        =  x                                                                        
        
           +(0(x),0(y)) =  x + y                                                                    
                        >= x + y                                                                    
                        =  0(+(x,y))                                                                
        
           +(0(x),1(y)) =  1 + x + y                                                                
                        >= 1 + x + y                                                                
                        =  1(+(x,y))                                                                
        
           +(1(x),0(y)) =  1 + x + y                                                                
                        >= 1 + x + y                                                                
                        =  1(+(x,y))                                                                
        
           +(1(x),1(y)) =  2 + x + y                                                                
                        >= 1 + x + y                                                                
                        =  0(+(+(x,y),1(#())))                                                      
        
                 0(#()) =  0                                                                        
                        >= 0                                                                        
                        =  #()                                                                      
        
             size(l(x)) =  1                                                                        
                        >= 1                                                                        
                        =  1(#())                                                                   
        
         size(n(x,y,z)) =  1 + x + y + z                                                            
                        >= 1 + x + y                                                                
                        =  +(+(size(x),size(y)),1(#()))                                             
        
***** Step 1.b:7.a:4.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            +#(0(x),1(y)) -> c_5(+#(x,y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:7.a:4.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            +#(0(x),1(y)) -> c_5(+#(x,y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: +#(0(x),0(y)) -> c_4(+#(x,y))
          3: +#(1(x),0(y)) -> c_6(+#(x,y))
          
        The strictly oriented rules are moved into the weak component.
****** Step 1.b:7.a:4.b:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            +#(0(x),1(y)) -> c_5(+#(x,y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_2) = {1,2},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1,2},
          uargs(c_35) = {1,2,3,4}
        
        Following symbols are considered usable:
          {+,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
        TcT has computed the following interpretation:
              p(#) = 0                    
              p(+) = x1 + x2              
              p(-) = 0                    
              p(0) = 1 + x1               
              p(1) = 1 + x1               
            p(and) = 0                    
             p(bs) = 0                    
          p(false) = 0                    
             p(ge) = 0                    
             p(if) = 0                    
              p(l) = 1                    
            p(max) = 0                    
            p(min) = 0                    
              p(n) = 1 + x1 + x2 + x3     
            p(not) = 0                    
           p(size) = x1                   
           p(true) = 0                    
            p(val) = 0                    
             p(wb) = 0                    
             p(+#) = x2                   
             p(-#) = 0                    
             p(0#) = 0                    
           p(and#) = 0                    
            p(bs#) = 0                    
            p(ge#) = 0                    
            p(if#) = 0                    
           p(max#) = 0                    
           p(min#) = 0                    
           p(not#) = 0                    
          p(size#) = x1 + x1^2            
           p(val#) = 0                    
            p(wb#) = x1^2                 
            p(c_1) = 0                    
            p(c_2) = x1 + x2              
            p(c_3) = 0                    
            p(c_4) = x1                   
            p(c_5) = 1 + x1               
            p(c_6) = x1                   
            p(c_7) = x1 + x2              
            p(c_8) = 0                    
            p(c_9) = 0                    
           p(c_10) = 0                    
           p(c_11) = 0                    
           p(c_12) = 0                    
           p(c_13) = 0                    
           p(c_14) = 0                    
           p(c_15) = 0                    
           p(c_16) = 0                    
           p(c_17) = 0                    
           p(c_18) = 0                    
           p(c_19) = 0                    
           p(c_20) = 0                    
           p(c_21) = 0                    
           p(c_22) = 0                    
           p(c_23) = 0                    
           p(c_24) = 0                    
           p(c_25) = 0                    
           p(c_26) = 0                    
           p(c_27) = 0                    
           p(c_28) = 0                    
           p(c_29) = 0                    
           p(c_30) = 0                    
           p(c_31) = 0                    
           p(c_32) = 0                    
           p(c_33) = 0                    
           p(c_34) = 0                    
           p(c_35) = 1 + x1 + x2 + x3 + x4
           p(c_36) = 0                    
           p(c_37) = 0                    
           p(c_38) = 0                    
           p(c_39) = 0                    
        
        Following rules are strictly oriented:
        +#(0(x),0(y)) = 1 + y       
                      > y           
                      = c_4(+#(x,y))
        
        +#(1(x),0(y)) = 1 + y       
                      > y           
                      = c_6(+#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
           +#(x,+(y,z)) =  y + z                                                                    
                        >= y + z                                                                    
                        =  c_2(+#(+(x,y),z),+#(x,y))                                                
        
          +#(0(x),1(y)) =  1 + y                                                                    
                        >= 1 + y                                                                    
                        =  c_5(+#(x,y))                                                             
        
          +#(1(x),1(y)) =  1 + y                                                                    
                        >= 1 + y                                                                    
                        =  c_7(+#(+(x,y),1(#())),+#(x,y))                                           
        
        size#(n(x,y,z)) =  2 + 3*x + 2*x*y + 2*x*z + x^2 + 3*y + 2*y*z + y^2 + 3*z + z^2            
                        >= 2 + x + x^2 + 2*y + y^2                                                  
                        =  c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        
          wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2            
                        >= y + y^2                                                                  
                        =  size#(y)                                                                 
        
          wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2            
                        >= z + z^2                                                                  
                        =  size#(z)                                                                 
        
          wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2            
                        >= y^2                                                                      
                        =  wb#(y)                                                                   
        
          wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2            
                        >= z^2                                                                      
                        =  wb#(z)                                                                   
        
               +(x,#()) =  x                                                                        
                        >= x                                                                        
                        =  x                                                                        
        
            +(x,+(y,z)) =  x + y + z                                                                
                        >= x + y + z                                                                
                        =  +(+(x,y),z)                                                              
        
               +(#(),x) =  x                                                                        
                        >= x                                                                        
                        =  x                                                                        
        
           +(0(x),0(y)) =  2 + x + y                                                                
                        >= 1 + x + y                                                                
                        =  0(+(x,y))                                                                
        
           +(0(x),1(y)) =  2 + x + y                                                                
                        >= 1 + x + y                                                                
                        =  1(+(x,y))                                                                
        
           +(1(x),0(y)) =  2 + x + y                                                                
                        >= 1 + x + y                                                                
                        =  1(+(x,y))                                                                
        
           +(1(x),1(y)) =  2 + x + y                                                                
                        >= 2 + x + y                                                                
                        =  0(+(+(x,y),1(#())))                                                      
        
                 0(#()) =  1                                                                        
                        >= 0                                                                        
                        =  #()                                                                      
        
             size(l(x)) =  1                                                                        
                        >= 1                                                                        
                        =  1(#())                                                                   
        
         size(n(x,y,z)) =  1 + x + y + z                                                            
                        >= 1 + x + y                                                                
                        =  +(+(size(x),size(y)),1(#()))                                             
        
****** Step 1.b:7.a:4.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:7.a:4.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          
        The strictly oriented rules are moved into the weak component.
******* Step 1.b:7.a:4.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1,2},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1,2},
          uargs(c_35) = {1,2,3,4}
        
        Following symbols are considered usable:
          {+,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
        TcT has computed the following interpretation:
              p(#) = [0]                                            
                     [0]                                            
              p(+) = [1 0] x1 + [2 0] x2 + [0]                      
                     [0 1]      [0 1]      [1]                      
              p(-) = [2 0] x1 + [0 0] x2 + [0]                      
                     [0 1]      [0 1]      [0]                      
              p(0) = [0 0] x1 + [0]                                 
                     [0 1]      [0]                                 
              p(1) = [0 0] x1 + [0]                                 
                     [0 1]      [1]                                 
            p(and) = [0 0] x1 + [0]                                 
                     [1 1]      [0]                                 
             p(bs) = [0]                                            
                     [0]                                            
          p(false) = [1]                                            
                     [0]                                            
             p(ge) = [0 0] x2 + [0]                                 
                     [1 0]      [1]                                 
             p(if) = [0 0] x3 + [2]                                 
                     [1 1]      [0]                                 
              p(l) = [0]                                            
                     [2]                                            
            p(max) = [2]                                            
                     [1]                                            
            p(min) = [0]                                            
                     [0]                                            
              p(n) = [1 3] x1 + [1 3] x2 + [1 1] x3 + [3]           
                     [0 1]      [0 1]      [0 1]      [3]           
            p(not) = [0]                                            
                     [0]                                            
           p(size) = [0 0] x1 + [0]                                 
                     [0 1]      [0]                                 
           p(true) = [2]                                            
                     [0]                                            
            p(val) = [2 1] x1 + [0]                                 
                     [2 2]      [0]                                 
             p(wb) = [0 0] x1 + [0]                                 
                     [0 1]      [0]                                 
             p(+#) = [0 2] x2 + [0]                                 
                     [0 0]      [1]                                 
             p(-#) = [0 0] x1 + [0 0] x2 + [0]                      
                     [0 1]      [0 2]      [0]                      
             p(0#) = [2 0] x1 + [0]                                 
                     [0 0]      [0]                                 
           p(and#) = [0]                                            
                     [0]                                            
            p(bs#) = [0 0] x1 + [1]                                 
                     [0 1]      [0]                                 
            p(ge#) = [0]                                            
                     [0]                                            
            p(if#) = [0 0] x2 + [0 0] x3 + [0]                      
                     [2 0]      [0 1]      [2]                      
           p(max#) = [0 0] x1 + [0]                                 
                     [0 1]      [1]                                 
           p(min#) = [0 2] x1 + [0]                                 
                     [1 1]      [2]                                 
           p(not#) = [0 0] x1 + [0]                                 
                     [1 2]      [0]                                 
          p(size#) = [1 1] x1 + [0]                                 
                     [0 1]      [0]                                 
           p(val#) = [1 0] x1 + [0]                                 
                     [0 0]      [1]                                 
            p(wb#) = [2 0] x1 + [0]                                 
                     [0 2]      [0]                                 
            p(c_1) = [0]                                            
                     [0]                                            
            p(c_2) = [1 0] x1 + [1 1] x2 + [0]                      
                     [0 0]      [0 1]      [0]                      
            p(c_3) = [0]                                            
                     [0]                                            
            p(c_4) = [1 0] x1 + [0]                                 
                     [0 0]      [0]                                 
            p(c_5) = [1 0] x1 + [0]                                 
                     [0 0]      [0]                                 
            p(c_6) = [1 0] x1 + [0]                                 
                     [0 0]      [0]                                 
            p(c_7) = [1 0] x1 + [1 0] x2 + [0]                      
                     [0 0]      [0 1]      [0]                      
            p(c_8) = [2]                                            
                     [1]                                            
            p(c_9) = [0]                                            
                     [1]                                            
           p(c_10) = [0 0] x1 + [1]                                 
                     [0 1]      [0]                                 
           p(c_11) = [2 1] x1 + [2 2] x2 + [1]                      
                     [0 2]      [0 1]      [2]                      
           p(c_12) = [2 1] x1 + [0]                                 
                     [1 2]      [0]                                 
           p(c_13) = [1 0] x1 + [1]                                 
                     [0 2]      [2]                                 
           p(c_14) = [2]                                            
                     [0]                                            
           p(c_15) = [1]                                            
                     [0]                                            
           p(c_16) = [0]                                            
                     [0]                                            
           p(c_17) = [0]                                            
                     [0]                                            
           p(c_18) = [0 0] x1 + [0 0] x2 + [0 1] x3 + [0 1] x5 + [0]
                     [2 0]      [0 1]      [0 0]      [0 0]      [0]
           p(c_19) = [0]                                            
                     [0]                                            
           p(c_20) = [0]                                            
                     [0]                                            
           p(c_21) = [0]                                            
                     [2]                                            
           p(c_22) = [1 0] x1 + [1]                                 
                     [0 1]      [2]                                 
           p(c_23) = [0 0] x1 + [0]                                 
                     [1 1]      [2]                                 
           p(c_24) = [0 0] x1 + [0]                                 
                     [1 2]      [0]                                 
           p(c_25) = [0]                                            
                     [0]                                            
           p(c_26) = [1]                                            
                     [0]                                            
           p(c_27) = [0]                                            
                     [0]                                            
           p(c_28) = [0]                                            
                     [2]                                            
           p(c_29) = [1 0] x1 + [2]                                 
                     [1 0]      [0]                                 
           p(c_30) = [2]                                            
                     [0]                                            
           p(c_31) = [0]                                            
                     [0]                                            
           p(c_32) = [0]                                            
                     [2]                                            
           p(c_33) = [1]                                            
                     [0]                                            
           p(c_34) = [2]                                            
                     [2]                                            
           p(c_35) = [1 1] x1 + [1 0] x2 + [1 1] x3 + [1 1] x4 + [3]
                     [0 0]      [0 0]      [0 0]      [0 0]      [0]
           p(c_36) = [0]                                            
                     [0]                                            
           p(c_37) = [0]                                            
                     [0]                                            
           p(c_38) = [0]                                            
                     [1]                                            
           p(c_39) = [0 0] x8 + [0]                                 
                     [0 1]      [1]                                 
        
        Following rules are strictly oriented:
        +#(x,+(y,z)) = [0 2] y + [0 2] z + [2]  
                       [0 0]     [0 0]     [1]  
                     > [0 2] y + [0 2] z + [1]  
                       [0 0]     [0 0]     [1]  
                     = c_2(+#(+(x,y),z),+#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
          +#(0(x),0(y)) =  [0 2] y + [0]                                                            
                           [0 0]     [1]                                                            
                        >= [0 2] y + [0]                                                            
                           [0 0]     [0]                                                            
                        =  c_4(+#(x,y))                                                             
        
          +#(0(x),1(y)) =  [0 2] y + [2]                                                            
                           [0 0]     [1]                                                            
                        >= [0 2] y + [0]                                                            
                           [0 0]     [0]                                                            
                        =  c_5(+#(x,y))                                                             
        
          +#(1(x),0(y)) =  [0 2] y + [0]                                                            
                           [0 0]     [1]                                                            
                        >= [0 2] y + [0]                                                            
                           [0 0]     [0]                                                            
                        =  c_6(+#(x,y))                                                             
        
          +#(1(x),1(y)) =  [0 2] y + [2]                                                            
                           [0 0]     [1]                                                            
                        >= [0 2] y + [2]                                                            
                           [0 0]     [1]                                                            
                        =  c_7(+#(+(x,y),1(#())),+#(x,y))                                           
        
        size#(n(x,y,z)) =  [1 4] x + [1 4] y + [1 2] z + [6]                                        
                           [0 1]     [0 1]     [0 1]     [3]                                        
                        >= [1 2] x + [1 4] y + [6]                                                  
                           [0 0]     [0 0]     [0]                                                  
                        =  c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        
          wb#(n(x,y,z)) =  [2 6] x + [2 6] y + [2 2] z + [6]                                        
                           [0 2]     [0 2]     [0 2]     [6]                                        
                        >= [1 1] y + [0]                                                            
                           [0 1]     [0]                                                            
                        =  size#(y)                                                                 
        
          wb#(n(x,y,z)) =  [2 6] x + [2 6] y + [2 2] z + [6]                                        
                           [0 2]     [0 2]     [0 2]     [6]                                        
                        >= [1 1] z + [0]                                                            
                           [0 1]     [0]                                                            
                        =  size#(z)                                                                 
        
          wb#(n(x,y,z)) =  [2 6] x + [2 6] y + [2 2] z + [6]                                        
                           [0 2]     [0 2]     [0 2]     [6]                                        
                        >= [2 0] y + [0]                                                            
                           [0 2]     [0]                                                            
                        =  wb#(y)                                                                   
        
          wb#(n(x,y,z)) =  [2 6] x + [2 6] y + [2 2] z + [6]                                        
                           [0 2]     [0 2]     [0 2]     [6]                                        
                        >= [2 0] z + [0]                                                            
                           [0 2]     [0]                                                            
                        =  wb#(z)                                                                   
        
               +(x,#()) =  [1 0] x + [0]                                                            
                           [0 1]     [1]                                                            
                        >= [1 0] x + [0]                                                            
                           [0 1]     [0]                                                            
                        =  x                                                                        
        
            +(x,+(y,z)) =  [1 0] x + [2 0] y + [4 0] z + [0]                                        
                           [0 1]     [0 1]     [0 1]     [2]                                        
                        >= [1 0] x + [2 0] y + [2 0] z + [0]                                        
                           [0 1]     [0 1]     [0 1]     [2]                                        
                        =  +(+(x,y),z)                                                              
        
               +(#(),x) =  [2 0] x + [0]                                                            
                           [0 1]     [1]                                                            
                        >= [1 0] x + [0]                                                            
                           [0 1]     [0]                                                            
                        =  x                                                                        
        
           +(0(x),0(y)) =  [0 0] x + [0 0] y + [0]                                                  
                           [0 1]     [0 1]     [1]                                                  
                        >= [0 0] x + [0 0] y + [0]                                                  
                           [0 1]     [0 1]     [1]                                                  
                        =  0(+(x,y))                                                                
        
           +(0(x),1(y)) =  [0 0] x + [0 0] y + [0]                                                  
                           [0 1]     [0 1]     [2]                                                  
                        >= [0 0] x + [0 0] y + [0]                                                  
                           [0 1]     [0 1]     [2]                                                  
                        =  1(+(x,y))                                                                
        
           +(1(x),0(y)) =  [0 0] x + [0 0] y + [0]                                                  
                           [0 1]     [0 1]     [2]                                                  
                        >= [0 0] x + [0 0] y + [0]                                                  
                           [0 1]     [0 1]     [2]                                                  
                        =  1(+(x,y))                                                                
        
           +(1(x),1(y)) =  [0 0] x + [0 0] y + [0]                                                  
                           [0 1]     [0 1]     [3]                                                  
                        >= [0 0] x + [0 0] y + [0]                                                  
                           [0 1]     [0 1]     [3]                                                  
                        =  0(+(+(x,y),1(#())))                                                      
        
                 0(#()) =  [0]                                                                      
                           [0]                                                                      
                        >= [0]                                                                      
                           [0]                                                                      
                        =  #()                                                                      
        
             size(l(x)) =  [0]                                                                      
                           [2]                                                                      
                        >= [0]                                                                      
                           [1]                                                                      
                        =  1(#())                                                                   
        
         size(n(x,y,z)) =  [0 0] x + [0 0] y + [0 0] z + [0]                                        
                           [0 1]     [0 1]     [0 1]     [3]                                        
                        >= [0 0] x + [0 0] y + [0]                                                  
                           [0 1]     [0 1]     [3]                                                  
                        =  +(+(size(x),size(y)),1(#()))                                             
        
******* Step 1.b:7.a:4.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:7.a:4.b:1.b:1.b:1.b:1: DecomposeDG WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          wb#(n(x,y,z)) -> size#(y)
          wb#(n(x,y,z)) -> size#(z)
          wb#(n(x,y,z)) -> wb#(y)
          wb#(n(x,y,z)) -> wb#(z)
        and a lower component
          +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          +#(0(x),0(y)) -> c_4(+#(x,y))
          +#(0(x),1(y)) -> c_5(+#(x,y))
          +#(1(x),0(y)) -> c_6(+#(x,y))
          +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        Further, following extension rules are added to the lower component.
          size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#()))
          size#(n(x,y,z)) -> +#(size(x),size(y))
          size#(n(x,y,z)) -> size#(x)
          size#(n(x,y,z)) -> size#(y)
          wb#(n(x,y,z)) -> size#(y)
          wb#(n(x,y,z)) -> size#(z)
          wb#(n(x,y,z)) -> wb#(y)
          wb#(n(x,y,z)) -> wb#(z)
******** Step 1.b:7.a:4.b:1.b:1.b:1.b:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        - Weak DPs:
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
          
        The strictly oriented rules are moved into the weak component.
********* Step 1.b:7.a:4.b:1.b:1.b:1.b:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        - Weak DPs:
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_35) = {1,2,3,4}
        
        Following symbols are considered usable:
          {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
        TcT has computed the following interpretation:
              p(#) = [0]                                    
              p(+) = [4] x1 + [0]                           
              p(-) = [0]                                    
              p(0) = [1] x1 + [5]                           
              p(1) = [1] x1 + [1]                           
            p(and) = [0]                                    
             p(bs) = [0]                                    
          p(false) = [0]                                    
             p(ge) = [0]                                    
             p(if) = [0]                                    
              p(l) = [0]                                    
            p(max) = [0]                                    
            p(min) = [0]                                    
              p(n) = [1] x1 + [1] x2 + [1] x3 + [7]         
            p(not) = [0]                                    
           p(size) = [1]                                    
           p(true) = [0]                                    
            p(val) = [0]                                    
             p(wb) = [0]                                    
             p(+#) = [2]                                    
             p(-#) = [0]                                    
             p(0#) = [0]                                    
           p(and#) = [0]                                    
            p(bs#) = [0]                                    
            p(ge#) = [0]                                    
            p(if#) = [1] x3 + [0]                           
           p(max#) = [1] x1 + [0]                           
           p(min#) = [1] x1 + [0]                           
           p(not#) = [0]                                    
          p(size#) = [4] x1 + [0]                           
           p(val#) = [8] x1 + [0]                           
            p(wb#) = [4] x1 + [1]                           
            p(c_1) = [0]                                    
            p(c_2) = [1] x2 + [0]                           
            p(c_3) = [0]                                    
            p(c_4) = [0]                                    
            p(c_5) = [4] x1 + [0]                           
            p(c_6) = [2] x1 + [0]                           
            p(c_7) = [1] x2 + [0]                           
            p(c_8) = [0]                                    
            p(c_9) = [0]                                    
           p(c_10) = [0]                                    
           p(c_11) = [1] x1 + [0]                           
           p(c_12) = [0]                                    
           p(c_13) = [1] x1 + [0]                           
           p(c_14) = [0]                                    
           p(c_15) = [0]                                    
           p(c_16) = [0]                                    
           p(c_17) = [0]                                    
           p(c_18) = [1] x2 + [1] x3 + [1] x5 + [4] x6 + [0]
           p(c_19) = [0]                                    
           p(c_20) = [2] x1 + [2]                           
           p(c_21) = [1]                                    
           p(c_22) = [1] x1 + [8]                           
           p(c_23) = [1] x1 + [1]                           
           p(c_24) = [0]                                    
           p(c_25) = [8] x1 + [1]                           
           p(c_26) = [1]                                    
           p(c_27) = [0]                                    
           p(c_28) = [1]                                    
           p(c_29) = [0]                                    
           p(c_30) = [2]                                    
           p(c_31) = [2] x1 + [0]                           
           p(c_32) = [2]                                    
           p(c_33) = [2]                                    
           p(c_34) = [1]                                    
           p(c_35) = [7] x1 + [4] x2 + [1] x3 + [1] x4 + [4]
           p(c_36) = [4]                                    
           p(c_37) = [0]                                    
           p(c_38) = [2]                                    
           p(c_39) = [1] x2 + [1] x5 + [1] x8 + [0]         
        
        Following rules are strictly oriented:
        size#(n(x,y,z)) = [4] x + [4] y + [4] z + [28]                                             
                        > [4] x + [4] y + [26]                                                     
                        = c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
        
        
        Following rules are (at-least) weakly oriented:
        wb#(n(x,y,z)) =  [4] x + [4] y + [4] z + [29]
                      >= [4] y + [0]                 
                      =  size#(y)                    
        
        wb#(n(x,y,z)) =  [4] x + [4] y + [4] z + [29]
                      >= [4] z + [0]                 
                      =  size#(z)                    
        
        wb#(n(x,y,z)) =  [4] x + [4] y + [4] z + [29]
                      >= [4] y + [1]                 
                      =  wb#(y)                      
        
        wb#(n(x,y,z)) =  [4] x + [4] y + [4] z + [29]
                      >= [4] z + [1]                 
                      =  wb#(z)                      
        
********* Step 1.b:7.a:4.b:1.b:1.b:1.b:1.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

********* Step 1.b:7.a:4.b:1.b:1.b:1.b:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
             -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):1
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):1
          
          2:W:wb#(n(x,y,z)) -> size#(y)
             -->_1 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):1
          
          3:W:wb#(n(x,y,z)) -> size#(z)
             -->_1 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):1
          
          4:W:wb#(n(x,y,z)) -> wb#(y)
             -->_1 wb#(n(x,y,z)) -> wb#(z):5
             -->_1 wb#(n(x,y,z)) -> wb#(y):4
             -->_1 wb#(n(x,y,z)) -> size#(z):3
             -->_1 wb#(n(x,y,z)) -> size#(y):2
          
          5:W:wb#(n(x,y,z)) -> wb#(z)
             -->_1 wb#(n(x,y,z)) -> wb#(z):5
             -->_1 wb#(n(x,y,z)) -> wb#(y):4
             -->_1 wb#(n(x,y,z)) -> size#(z):3
             -->_1 wb#(n(x,y,z)) -> size#(y):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: wb#(n(x,y,z)) -> wb#(y)
          5: wb#(n(x,y,z)) -> wb#(z)
          3: wb#(n(x,y,z)) -> size#(z)
          2: wb#(n(x,y,z)) -> size#(y)
          1: size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
********* Step 1.b:7.a:4.b:1.b:1.b:1.b:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

******** Step 1.b:7.a:4.b:1.b:1.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#()))
            size#(n(x,y,z)) -> +#(size(x),size(y))
            size#(n(x,y,z)) -> size#(x)
            size#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
          
        The strictly oriented rules are moved into the weak component.
********* Step 1.b:7.a:4.b:1.b:1.b:1.b:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#()))
            size#(n(x,y,z)) -> +#(size(x),size(y))
            size#(n(x,y,z)) -> size#(x)
            size#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_2) = {1,2},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1,2}
        
        Following symbols are considered usable:
          {+,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
        TcT has computed the following interpretation:
              p(#) = 0               
              p(+) = x1 + x2         
              p(-) = 0               
              p(0) = x1              
              p(1) = 1 + x1          
            p(and) = 0               
             p(bs) = 0               
          p(false) = 0               
             p(ge) = 0               
             p(if) = 0               
              p(l) = 1 + x1          
            p(max) = 0               
            p(min) = 0               
              p(n) = 1 + x1 + x2 + x3
            p(not) = 0               
           p(size) = x1              
           p(true) = 0               
            p(val) = 0               
             p(wb) = 0               
             p(+#) = x1*x2 + x2^2    
             p(-#) = 0               
             p(0#) = 0               
           p(and#) = 0               
            p(bs#) = 0               
            p(ge#) = 0               
            p(if#) = 0               
           p(max#) = 0               
           p(min#) = 0               
           p(not#) = 0               
          p(size#) = x1^2            
           p(val#) = 0               
            p(wb#) = x1^2            
            p(c_1) = 0               
            p(c_2) = x1 + x2         
            p(c_3) = 0               
            p(c_4) = x1              
            p(c_5) = 1 + x1          
            p(c_6) = x1              
            p(c_7) = x1 + x2         
            p(c_8) = 0               
            p(c_9) = 0               
           p(c_10) = 0               
           p(c_11) = 0               
           p(c_12) = 0               
           p(c_13) = 0               
           p(c_14) = 0               
           p(c_15) = 0               
           p(c_16) = 0               
           p(c_17) = 0               
           p(c_18) = 0               
           p(c_19) = 0               
           p(c_20) = 0               
           p(c_21) = 0               
           p(c_22) = 0               
           p(c_23) = 0               
           p(c_24) = 0               
           p(c_25) = 0               
           p(c_26) = 0               
           p(c_27) = 0               
           p(c_28) = 0               
           p(c_29) = 0               
           p(c_30) = 0               
           p(c_31) = 0               
           p(c_32) = 0               
           p(c_33) = 0               
           p(c_34) = 0               
           p(c_35) = 0               
           p(c_36) = 0               
           p(c_37) = 0               
           p(c_38) = 0               
           p(c_39) = 0               
        
        Following rules are strictly oriented:
        +#(1(x),1(y)) = 2 + x + x*y + 3*y + y^2       
                      > 1 + x + x*y + y + y^2         
                      = c_7(+#(+(x,y),1(#())),+#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
           +#(x,+(y,z)) =  x*y + x*z + 2*y*z + y^2 + z^2                                
                        >= x*y + x*z + y*z + y^2 + z^2                                  
                        =  c_2(+#(+(x,y),z),+#(x,y))                                    
        
          +#(0(x),0(y)) =  x*y + y^2                                                    
                        >= x*y + y^2                                                    
                        =  c_4(+#(x,y))                                                 
        
          +#(0(x),1(y)) =  1 + x + x*y + 2*y + y^2                                      
                        >= 1 + x*y + y^2                                                
                        =  c_5(+#(x,y))                                                 
        
          +#(1(x),0(y)) =  x*y + y + y^2                                                
                        >= x*y + y^2                                                    
                        =  c_6(+#(x,y))                                                 
        
        size#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                        >= 1 + x + y                                                    
                        =  +#(+(size(x),size(y)),1(#()))                                
        
        size#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                        >= x*y + y^2                                                    
                        =  +#(size(x),size(y))                                          
        
        size#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                        >= x^2                                                          
                        =  size#(x)                                                     
        
        size#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                        >= y^2                                                          
                        =  size#(y)                                                     
        
          wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                        >= y^2                                                          
                        =  size#(y)                                                     
        
          wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                        >= z^2                                                          
                        =  size#(z)                                                     
        
          wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                        >= y^2                                                          
                        =  wb#(y)                                                       
        
          wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                        >= z^2                                                          
                        =  wb#(z)                                                       
        
               +(x,#()) =  x                                                            
                        >= x                                                            
                        =  x                                                            
        
            +(x,+(y,z)) =  x + y + z                                                    
                        >= x + y + z                                                    
                        =  +(+(x,y),z)                                                  
        
               +(#(),x) =  x                                                            
                        >= x                                                            
                        =  x                                                            
        
           +(0(x),0(y)) =  x + y                                                        
                        >= x + y                                                        
                        =  0(+(x,y))                                                    
        
           +(0(x),1(y)) =  1 + x + y                                                    
                        >= 1 + x + y                                                    
                        =  1(+(x,y))                                                    
        
           +(1(x),0(y)) =  1 + x + y                                                    
                        >= 1 + x + y                                                    
                        =  1(+(x,y))                                                    
        
           +(1(x),1(y)) =  2 + x + y                                                    
                        >= 1 + x + y                                                    
                        =  0(+(+(x,y),1(#())))                                          
        
                 0(#()) =  0                                                            
                        >= 0                                                            
                        =  #()                                                          
        
             size(l(x)) =  1 + x                                                        
                        >= 1                                                            
                        =  1(#())                                                       
        
         size(n(x,y,z)) =  1 + x + y + z                                                
                        >= 1 + x + y                                                    
                        =  +(+(size(x),size(y)),1(#()))                                 
        
********* Step 1.b:7.a:4.b:1.b:1.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
            size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#()))
            size#(n(x,y,z)) -> +#(size(x),size(y))
            size#(n(x,y,z)) -> size#(x)
            size#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

********* Step 1.b:7.a:4.b:1.b:1.b:1.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
            size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#()))
            size#(n(x,y,z)) -> +#(size(x),size(y))
            size#(n(x,y,z)) -> size#(x)
            size#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(y)
            wb#(n(x,y,z)) -> size#(z)
            wb#(n(x,y,z)) -> wb#(y)
            wb#(n(x,y,z)) -> wb#(z)
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:+#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          2:W:+#(0(x),0(y)) -> c_4(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          3:W:+#(0(x),1(y)) -> c_5(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          4:W:+#(1(x),0(y)) -> c_6(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          5:W:+#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          6:W:size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#()))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
          
          7:W:size#(n(x,y,z)) -> +#(size(x),size(y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):5
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):3
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):1
          
          8:W:size#(n(x,y,z)) -> size#(x)
             -->_1 size#(n(x,y,z)) -> size#(y):9
             -->_1 size#(n(x,y,z)) -> size#(x):8
             -->_1 size#(n(x,y,z)) -> +#(size(x),size(y)):7
             -->_1 size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#())):6
          
          9:W:size#(n(x,y,z)) -> size#(y)
             -->_1 size#(n(x,y,z)) -> size#(y):9
             -->_1 size#(n(x,y,z)) -> size#(x):8
             -->_1 size#(n(x,y,z)) -> +#(size(x),size(y)):7
             -->_1 size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#())):6
          
          10:W:wb#(n(x,y,z)) -> size#(y)
             -->_1 size#(n(x,y,z)) -> size#(y):9
             -->_1 size#(n(x,y,z)) -> size#(x):8
             -->_1 size#(n(x,y,z)) -> +#(size(x),size(y)):7
             -->_1 size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#())):6
          
          11:W:wb#(n(x,y,z)) -> size#(z)
             -->_1 size#(n(x,y,z)) -> size#(y):9
             -->_1 size#(n(x,y,z)) -> size#(x):8
             -->_1 size#(n(x,y,z)) -> +#(size(x),size(y)):7
             -->_1 size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#())):6
          
          12:W:wb#(n(x,y,z)) -> wb#(y)
             -->_1 wb#(n(x,y,z)) -> wb#(z):13
             -->_1 wb#(n(x,y,z)) -> wb#(y):12
             -->_1 wb#(n(x,y,z)) -> size#(z):11
             -->_1 wb#(n(x,y,z)) -> size#(y):10
          
          13:W:wb#(n(x,y,z)) -> wb#(z)
             -->_1 wb#(n(x,y,z)) -> wb#(z):13
             -->_1 wb#(n(x,y,z)) -> wb#(y):12
             -->_1 wb#(n(x,y,z)) -> size#(z):11
             -->_1 wb#(n(x,y,z)) -> size#(y):10
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          12: wb#(n(x,y,z)) -> wb#(y)
          13: wb#(n(x,y,z)) -> wb#(z)
          11: wb#(n(x,y,z)) -> size#(z)
          10: wb#(n(x,y,z)) -> size#(y)
          8: size#(n(x,y,z)) -> size#(x)
          9: size#(n(x,y,z)) -> size#(y)
          7: size#(n(x,y,z)) -> +#(size(x),size(y))
          6: size#(n(x,y,z)) -> +#(+(size(x),size(y)),1(#()))
          1: +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
          5: +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
          4: +#(1(x),0(y)) -> c_6(+#(x,y))
          3: +#(0(x),1(y)) -> c_5(+#(x,y))
          2: +#(0(x),0(y)) -> c_4(+#(x,y))
********* Step 1.b:7.a:4.b:1.b:1.b:1.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:7.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak DPs:
            +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
            +#(0(x),0(y)) -> c_4(+#(x,y))
            +#(0(x),1(y)) -> c_5(+#(x,y))
            +#(1(x),0(y)) -> c_6(+#(x,y))
            +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/13}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:-#(0(x),0(y)) -> c_10(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          2:S:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
             -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          3:S:-#(1(x),0(y)) -> c_12(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          4:S:-#(1(x),1(y)) -> c_13(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          5:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
             -->_4 min#(n(x,y,z)) -> c_31(min#(y)):12
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):11
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):5
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):5
          
          6:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          7:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          8:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          9:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          10:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          11:S:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):11
          
          12:S:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):12
          
          13:S:size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):18
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):16
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):15
             -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
          
          14:S:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(y),size(z)))
                                    ,-#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(z),size(y)))
                                    ,-#(size(z),size(y))
                                    ,size#(z)
                                    ,size#(y)
                                    ,wb#(y)
                                    ,wb#(z))
             -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):14
             -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):14
             -->_11 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_10 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_7 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_6 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_2 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_8 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_8 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_9 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_5 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_9 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_5 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_9 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_5 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_9 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_5 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          15:W:+#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):18
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):18
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):16
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):16
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):15
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):15
          
          16:W:+#(0(x),0(y)) -> c_4(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):18
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):16
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):15
          
          17:W:+#(0(x),1(y)) -> c_5(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):18
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):16
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):15
          
          18:W:+#(1(x),0(y)) -> c_6(+#(x,y))
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_1 +#(1(x),0(y)) -> c_6(+#(x,y)):18
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_1 +#(0(x),0(y)) -> c_4(+#(x,y)):16
             -->_1 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):15
          
          19:W:+#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
             -->_2 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_1 +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y)):19
             -->_2 +#(1(x),0(y)) -> c_6(+#(x,y)):18
             -->_2 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_1 +#(0(x),1(y)) -> c_5(+#(x,y)):17
             -->_2 +#(0(x),0(y)) -> c_4(+#(x,y)):16
             -->_2 +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y)):15
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          19: +#(1(x),1(y)) -> c_7(+#(+(x,y),1(#())),+#(x,y))
          18: +#(1(x),0(y)) -> c_6(+#(x,y))
          17: +#(0(x),1(y)) -> c_5(+#(x,y))
          16: +#(0(x),0(y)) -> c_4(+#(x,y))
          15: +#(x,+(y,z)) -> c_2(+#(+(x,y),z),+#(x,y))
*** Step 1.b:7.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/4
            ,c_36/0,c_37/0,c_38/0,c_39/13}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:-#(0(x),0(y)) -> c_10(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          2:S:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
             -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          3:S:-#(1(x),0(y)) -> c_12(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          4:S:-#(1(x),1(y)) -> c_13(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          5:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
             -->_4 min#(n(x,y,z)) -> c_31(min#(y)):12
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):11
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):5
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):5
          
          6:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          7:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          8:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          9:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          10:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          11:S:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):11
          
          12:S:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):12
          
          13:S:size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y))
             -->_4 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
          
          14:S:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(y),size(z)))
                                    ,-#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(z),size(y)))
                                    ,-#(size(z),size(y))
                                    ,size#(z)
                                    ,size#(y)
                                    ,wb#(y)
                                    ,wb#(z))
             -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):14
             -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):14
             -->_11 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_10 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_7 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_6 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_3 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_2 size#(n(x,y,z)) -> c_35(+#(+(size(x),size(y)),1(#())),+#(size(x),size(y)),size#(x),size#(y)):13
             -->_8 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_8 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_9 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_5 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_9 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_5 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_9 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_5 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_9 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_5 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          size#(n(x,y,z)) -> c_35(size#(x),size#(y))
*** Step 1.b:7.b:3: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/13}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              -#(0(x),0(y)) -> c_10(-#(x,y))
              -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
              -#(1(x),0(y)) -> c_12(-#(x,y))
              -#(1(x),1(y)) -> c_13(-#(x,y))
          - Weak DPs:
              bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
              ge#(#(),0(x)) -> c_20(ge#(#(),x))
              ge#(0(x),0(y)) -> c_22(ge#(x,y))
              ge#(0(x),1(y)) -> c_23(ge#(y,x))
              ge#(1(x),0(y)) -> c_24(ge#(x,y))
              ge#(1(x),1(y)) -> c_25(ge#(x,y))
              max#(n(x,y,z)) -> c_29(max#(z))
              min#(n(x,y,z)) -> c_31(min#(y))
              size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(y),size(z)))
                                   ,-#(size(y),size(z))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(z),size(y)))
                                   ,-#(size(z),size(y))
                                   ,size#(z)
                                   ,size#(y)
                                   ,wb#(y)
                                   ,wb#(z))
          - Weak TRS:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              max(l(x)) -> x
              max(n(x,y,z)) -> max(z)
              min(l(x)) -> x
              min(n(x,y,z)) -> min(y)
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          - Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
              ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0
              ,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0
              ,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0
              ,c_35/2,c_36/0,c_37/0,c_38/0,c_39/13}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
              ,wb#} and constructors {#,1,false,l,n,true}
        
        Problem (S)
          - Strict DPs:
              bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
              ge#(#(),0(x)) -> c_20(ge#(#(),x))
              ge#(0(x),0(y)) -> c_22(ge#(x,y))
              ge#(0(x),1(y)) -> c_23(ge#(y,x))
              ge#(1(x),0(y)) -> c_24(ge#(x,y))
              ge#(1(x),1(y)) -> c_25(ge#(x,y))
              max#(n(x,y,z)) -> c_29(max#(z))
              min#(n(x,y,z)) -> c_31(min#(y))
              size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(y),size(z)))
                                   ,-#(size(y),size(z))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(z),size(y)))
                                   ,-#(size(z),size(y))
                                   ,size#(z)
                                   ,size#(y)
                                   ,wb#(y)
                                   ,wb#(z))
          - Weak DPs:
              -#(0(x),0(y)) -> c_10(-#(x,y))
              -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
              -#(1(x),0(y)) -> c_12(-#(x,y))
              -#(1(x),1(y)) -> c_13(-#(x,y))
          - Weak TRS:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              max(l(x)) -> x
              max(n(x,y,z)) -> max(z)
              min(l(x)) -> x
              min(n(x,y,z)) -> min(y)
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          - Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
              ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0
              ,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0
              ,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0
              ,c_35/2,c_36/0,c_37/0,c_38/0,c_39/13}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
              ,wb#} and constructors {#,1,false,l,n,true}
**** Step 1.b:7.b:3.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
        - Weak DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/13}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:-#(0(x),0(y)) -> c_10(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          2:S:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
             -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
          
          3:S:-#(1(x),0(y)) -> c_12(-#(x,y))
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
          
          4:S:-#(1(x),1(y)) -> c_13(-#(x,y))
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
          
          5:W:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
             -->_4 min#(n(x,y,z)) -> c_31(min#(y)):12
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):11
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):5
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):5
          
          6:W:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
          
          7:W:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
          
          8:W:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
          
          9:W:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
          
          10:W:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
          
          11:W:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):11
          
          12:W:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):12
          
          13:W:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
             -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
          
          14:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(y),size(z)))
                                    ,-#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(z),size(y)))
                                    ,-#(size(z),size(y))
                                    ,size#(z)
                                    ,size#(y)
                                    ,wb#(y)
                                    ,wb#(z))
             -->_9 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_5 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_9 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_5 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_9 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_5 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_9 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_5 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):6
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):7
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):8
             -->_8 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):9
             -->_8 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):10
             -->_11 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
             -->_10 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
             -->_7 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
             -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
             -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):13
             -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):14
             -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):14
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          13: size#(n(x,y,z)) -> c_35(size#(x),size#(y))
          5: bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
          10: ge#(1(x),1(y)) -> c_25(ge#(x,y))
          9: ge#(1(x),0(y)) -> c_24(ge#(x,y))
          8: ge#(0(x),1(y)) -> c_23(ge#(y,x))
          7: ge#(0(x),0(y)) -> c_22(ge#(x,y))
          6: ge#(#(),0(x)) -> c_20(ge#(#(),x))
          11: max#(n(x,y,z)) -> c_29(max#(z))
          12: min#(n(x,y,z)) -> c_31(min#(y))
**** Step 1.b:7.b:3.a:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/13}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:-#(0(x),0(y)) -> c_10(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          2:S:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
             -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
          
          3:S:-#(1(x),0(y)) -> c_12(-#(x,y))
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
          
          4:S:-#(1(x),1(y)) -> c_13(-#(x,y))
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
          
          14:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(y),size(z)))
                                    ,-#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(z),size(y)))
                                    ,-#(size(z),size(y))
                                    ,size#(z)
                                    ,size#(y)
                                    ,wb#(y)
                                    ,wb#(z))
             -->_9 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_5 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_9 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_5 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_9 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_5 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_9 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_5 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):14
             -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):14
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
**** Step 1.b:7.b:3.a:3: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/4}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          +(x,#()) -> x
          +(x,+(y,z)) -> +(+(x,y),z)
          +(#(),x) -> x
          +(0(x),0(y)) -> 0(+(x,y))
          +(0(x),1(y)) -> 1(+(x,y))
          +(1(x),0(y)) -> 1(+(x,y))
          +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
          -(x,#()) -> x
          -(#(),x) -> #()
          -(0(x),0(y)) -> 0(-(x,y))
          -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
          -(1(x),0(y)) -> 1(-(x,y))
          -(1(x),1(y)) -> 0(-(x,y))
          0(#()) -> #()
          size(l(x)) -> 1(#())
          size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          -#(0(x),0(y)) -> c_10(-#(x,y))
          -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
          -#(1(x),0(y)) -> c_12(-#(x,y))
          -#(1(x),1(y)) -> c_13(-#(x,y))
          wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
**** Step 1.b:7.b:3.a:4: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/4}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: -#(0(x),0(y)) -> c_10(-#(x,y))
          4: -#(1(x),1(y)) -> c_13(-#(x,y))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:7.b:3.a:4.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/4}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_10) = {1},
          uargs(c_11) = {1,2},
          uargs(c_12) = {1},
          uargs(c_13) = {1},
          uargs(c_39) = {1,2,3,4}
        
        Following symbols are considered usable:
          {+,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
        TcT has computed the following interpretation:
              p(#) = 0                
              p(+) = x1 + x2          
              p(-) = 0                
              p(0) = 1 + x1           
              p(1) = 1 + x1           
            p(and) = 0                
             p(bs) = 0                
          p(false) = 0                
             p(ge) = 0                
             p(if) = 0                
              p(l) = 1                
            p(max) = 0                
            p(min) = 0                
              p(n) = 1 + x1 + x2 + x3 
            p(not) = 0                
           p(size) = x1               
           p(true) = 0                
            p(val) = 0                
             p(wb) = 0                
             p(+#) = 0                
             p(-#) = x2               
             p(0#) = 0                
           p(and#) = 0                
            p(bs#) = 0                
            p(ge#) = 0                
            p(if#) = 0                
           p(max#) = 0                
           p(min#) = 0                
           p(not#) = 0                
          p(size#) = 0                
           p(val#) = 0                
            p(wb#) = 1 + x1^2         
            p(c_1) = 0                
            p(c_2) = 0                
            p(c_3) = 0                
            p(c_4) = 0                
            p(c_5) = 0                
            p(c_6) = 0                
            p(c_7) = 0                
            p(c_8) = 0                
            p(c_9) = 0                
           p(c_10) = x1               
           p(c_11) = x1 + x2          
           p(c_12) = 1 + x1           
           p(c_13) = x1               
           p(c_14) = 0                
           p(c_15) = 0                
           p(c_16) = 0                
           p(c_17) = 0                
           p(c_18) = 0                
           p(c_19) = 0                
           p(c_20) = 0                
           p(c_21) = 0                
           p(c_22) = 0                
           p(c_23) = 0                
           p(c_24) = 0                
           p(c_25) = 0                
           p(c_26) = 0                
           p(c_27) = 0                
           p(c_28) = 0                
           p(c_29) = 0                
           p(c_30) = 0                
           p(c_31) = 0                
           p(c_32) = 0                
           p(c_33) = 0                
           p(c_34) = 0                
           p(c_35) = 0                
           p(c_36) = 0                
           p(c_37) = 0                
           p(c_38) = 0                
           p(c_39) = x1 + x2 + x3 + x4
        
        Following rules are strictly oriented:
        -#(0(x),0(y)) = 1 + y        
                      > y            
                      = c_10(-#(x,y))
        
        -#(1(x),1(y)) = 1 + y        
                      > y            
                      = c_13(-#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
         -#(0(x),1(y)) =  1 + y                                                        
                       >= 1 + y                                                        
                       =  c_11(-#(-(x,y),1(#())),-#(x,y))                              
        
         -#(1(x),0(y)) =  1 + y                                                        
                       >= 1 + y                                                        
                       =  c_12(-#(x,y))                                                
        
         wb#(n(x,y,z)) =  2 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                       >= 2 + y + y^2 + z + z^2                                        
                       =  c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))  
        
              +(x,#()) =  x                                                            
                       >= x                                                            
                       =  x                                                            
        
           +(x,+(y,z)) =  x + y + z                                                    
                       >= x + y + z                                                    
                       =  +(+(x,y),z)                                                  
        
              +(#(),x) =  x                                                            
                       >= x                                                            
                       =  x                                                            
        
          +(0(x),0(y)) =  2 + x + y                                                    
                       >= 1 + x + y                                                    
                       =  0(+(x,y))                                                    
        
          +(0(x),1(y)) =  2 + x + y                                                    
                       >= 1 + x + y                                                    
                       =  1(+(x,y))                                                    
        
          +(1(x),0(y)) =  2 + x + y                                                    
                       >= 1 + x + y                                                    
                       =  1(+(x,y))                                                    
        
          +(1(x),1(y)) =  2 + x + y                                                    
                       >= 2 + x + y                                                    
                       =  0(+(+(x,y),1(#())))                                          
        
                0(#()) =  1                                                            
                       >= 0                                                            
                       =  #()                                                          
        
            size(l(x)) =  1                                                            
                       >= 1                                                            
                       =  1(#())                                                       
        
        size(n(x,y,z)) =  1 + x + y + z                                                
                       >= 1 + x + y                                                    
                       =  +(+(size(x),size(y)),1(#()))                                 
        
***** Step 1.b:7.b:3.a:4.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
        - Weak DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/4}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:7.b:3.a:4.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
        - Weak DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/4}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: -#(1(x),0(y)) -> c_12(-#(x,y))
          
        The strictly oriented rules are moved into the weak component.
****** Step 1.b:7.b:3.a:4.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
        - Weak DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/4}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_10) = {1},
          uargs(c_11) = {1,2},
          uargs(c_12) = {1},
          uargs(c_13) = {1},
          uargs(c_39) = {1,2,3,4}
        
        Following symbols are considered usable:
          {+,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
        TcT has computed the following interpretation:
              p(#) = 0                    
              p(+) = x1 + x2              
              p(-) = 0                    
              p(0) = 1 + x1               
              p(1) = 1 + x1               
            p(and) = 0                    
             p(bs) = 0                    
          p(false) = 0                    
             p(ge) = 0                    
             p(if) = 0                    
              p(l) = 1                    
            p(max) = 0                    
            p(min) = 0                    
              p(n) = 1 + x1 + x2 + x3     
            p(not) = 0                    
           p(size) = x1                   
           p(true) = 0                    
            p(val) = 0                    
             p(wb) = 0                    
             p(+#) = 0                    
             p(-#) = x2                   
             p(0#) = 0                    
           p(and#) = 0                    
            p(bs#) = 0                    
            p(ge#) = 0                    
            p(if#) = 0                    
           p(max#) = 0                    
           p(min#) = 0                    
           p(not#) = 0                    
          p(size#) = 0                    
           p(val#) = 0                    
            p(wb#) = x1^2                 
            p(c_1) = 0                    
            p(c_2) = 0                    
            p(c_3) = 0                    
            p(c_4) = 0                    
            p(c_5) = 0                    
            p(c_6) = 0                    
            p(c_7) = 0                    
            p(c_8) = 0                    
            p(c_9) = 0                    
           p(c_10) = 1 + x1               
           p(c_11) = x1 + x2              
           p(c_12) = x1                   
           p(c_13) = 1 + x1               
           p(c_14) = 0                    
           p(c_15) = 0                    
           p(c_16) = 0                    
           p(c_17) = 0                    
           p(c_18) = 0                    
           p(c_19) = 0                    
           p(c_20) = 0                    
           p(c_21) = 0                    
           p(c_22) = 0                    
           p(c_23) = 0                    
           p(c_24) = 0                    
           p(c_25) = 0                    
           p(c_26) = 0                    
           p(c_27) = 0                    
           p(c_28) = 0                    
           p(c_29) = 0                    
           p(c_30) = 0                    
           p(c_31) = 0                    
           p(c_32) = 0                    
           p(c_33) = 0                    
           p(c_34) = 0                    
           p(c_35) = 0                    
           p(c_36) = 0                    
           p(c_37) = 0                    
           p(c_38) = 0                    
           p(c_39) = 1 + x1 + x2 + x3 + x4
        
        Following rules are strictly oriented:
        -#(1(x),0(y)) = 1 + y        
                      > y            
                      = c_12(-#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
         -#(0(x),0(y)) =  1 + y                                                        
                       >= 1 + y                                                        
                       =  c_10(-#(x,y))                                                
        
         -#(0(x),1(y)) =  1 + y                                                        
                       >= 1 + y                                                        
                       =  c_11(-#(-(x,y),1(#())),-#(x,y))                              
        
         -#(1(x),1(y)) =  1 + y                                                        
                       >= 1 + y                                                        
                       =  c_13(-#(x,y))                                                
        
         wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                       >= 1 + y + y^2 + z + z^2                                        
                       =  c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))  
        
              +(x,#()) =  x                                                            
                       >= x                                                            
                       =  x                                                            
        
           +(x,+(y,z)) =  x + y + z                                                    
                       >= x + y + z                                                    
                       =  +(+(x,y),z)                                                  
        
              +(#(),x) =  x                                                            
                       >= x                                                            
                       =  x                                                            
        
          +(0(x),0(y)) =  2 + x + y                                                    
                       >= 1 + x + y                                                    
                       =  0(+(x,y))                                                    
        
          +(0(x),1(y)) =  2 + x + y                                                    
                       >= 1 + x + y                                                    
                       =  1(+(x,y))                                                    
        
          +(1(x),0(y)) =  2 + x + y                                                    
                       >= 1 + x + y                                                    
                       =  1(+(x,y))                                                    
        
          +(1(x),1(y)) =  2 + x + y                                                    
                       >= 2 + x + y                                                    
                       =  0(+(+(x,y),1(#())))                                          
        
                0(#()) =  1                                                            
                       >= 0                                                            
                       =  #()                                                          
        
            size(l(x)) =  1                                                            
                       >= 1                                                            
                       =  1(#())                                                       
        
        size(n(x,y,z)) =  1 + x + y + z                                                
                       >= 1 + x + y                                                    
                       =  +(+(size(x),size(y)),1(#()))                                 
        
****** Step 1.b:7.b:3.a:4.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
        - Weak DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/4}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:7.b:3.a:4.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
        - Weak DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/4}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
          
        The strictly oriented rules are moved into the weak component.
******* Step 1.b:7.b:3.a:4.b:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
        - Weak DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/4}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_10) = {1},
          uargs(c_11) = {1,2},
          uargs(c_12) = {1},
          uargs(c_13) = {1},
          uargs(c_39) = {1,2,3,4}
        
        Following symbols are considered usable:
          {+,-,0,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
        TcT has computed the following interpretation:
              p(#) = 0                    
              p(+) = x1 + x2              
              p(-) = x1                   
              p(0) = 1 + x1               
              p(1) = 1 + x1               
            p(and) = 0                    
             p(bs) = 0                    
          p(false) = 0                    
             p(ge) = 0                    
             p(if) = 0                    
              p(l) = 1                    
            p(max) = 0                    
            p(min) = 0                    
              p(n) = 1 + x1 + x2 + x3     
            p(not) = 0                    
           p(size) = x1                   
           p(true) = 0                    
            p(val) = 0                    
             p(wb) = 0                    
             p(+#) = 0                    
             p(-#) = x1*x2                
             p(0#) = 0                    
           p(and#) = 0                    
            p(bs#) = 0                    
            p(ge#) = 0                    
            p(if#) = 0                    
           p(max#) = 0                    
           p(min#) = 0                    
           p(not#) = 0                    
          p(size#) = 0                    
           p(val#) = 0                    
            p(wb#) = x1^2                 
            p(c_1) = 0                    
            p(c_2) = 0                    
            p(c_3) = 0                    
            p(c_4) = 0                    
            p(c_5) = 0                    
            p(c_6) = 0                    
            p(c_7) = 0                    
            p(c_8) = 0                    
            p(c_9) = 0                    
           p(c_10) = 1 + x1               
           p(c_11) = x1 + x2              
           p(c_12) = x1                   
           p(c_13) = x1                   
           p(c_14) = 0                    
           p(c_15) = 0                    
           p(c_16) = 0                    
           p(c_17) = 0                    
           p(c_18) = 0                    
           p(c_19) = 0                    
           p(c_20) = 0                    
           p(c_21) = 0                    
           p(c_22) = 0                    
           p(c_23) = 0                    
           p(c_24) = 0                    
           p(c_25) = 0                    
           p(c_26) = 0                    
           p(c_27) = 0                    
           p(c_28) = 0                    
           p(c_29) = 0                    
           p(c_30) = 0                    
           p(c_31) = 0                    
           p(c_32) = 0                    
           p(c_33) = 0                    
           p(c_34) = 0                    
           p(c_35) = 0                    
           p(c_36) = 0                    
           p(c_37) = 0                    
           p(c_38) = 0                    
           p(c_39) = 1 + x1 + x2 + x3 + x4
        
        Following rules are strictly oriented:
        -#(0(x),1(y)) = 1 + x + x*y + y                
                      > x + x*y                        
                      = c_11(-#(-(x,y),1(#())),-#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
         -#(0(x),0(y)) =  1 + x + x*y + y                                              
                       >= 1 + x*y                                                      
                       =  c_10(-#(x,y))                                                
        
         -#(1(x),0(y)) =  1 + x + x*y + y                                              
                       >= x*y                                                          
                       =  c_12(-#(x,y))                                                
        
         -#(1(x),1(y)) =  1 + x + x*y + y                                              
                       >= x*y                                                          
                       =  c_13(-#(x,y))                                                
        
         wb#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2
                       >= 1 + 2*y*z + y^2 + z^2                                        
                       =  c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))  
        
              +(x,#()) =  x                                                            
                       >= x                                                            
                       =  x                                                            
        
           +(x,+(y,z)) =  x + y + z                                                    
                       >= x + y + z                                                    
                       =  +(+(x,y),z)                                                  
        
              +(#(),x) =  x                                                            
                       >= x                                                            
                       =  x                                                            
        
          +(0(x),0(y)) =  2 + x + y                                                    
                       >= 1 + x + y                                                    
                       =  0(+(x,y))                                                    
        
          +(0(x),1(y)) =  2 + x + y                                                    
                       >= 1 + x + y                                                    
                       =  1(+(x,y))                                                    
        
          +(1(x),0(y)) =  2 + x + y                                                    
                       >= 1 + x + y                                                    
                       =  1(+(x,y))                                                    
        
          +(1(x),1(y)) =  2 + x + y                                                    
                       >= 2 + x + y                                                    
                       =  0(+(+(x,y),1(#())))                                          
        
              -(x,#()) =  x                                                            
                       >= x                                                            
                       =  x                                                            
        
              -(#(),x) =  0                                                            
                       >= 0                                                            
                       =  #()                                                          
        
          -(0(x),0(y)) =  1 + x                                                        
                       >= 1 + x                                                        
                       =  0(-(x,y))                                                    
        
          -(0(x),1(y)) =  1 + x                                                        
                       >= 1 + x                                                        
                       =  1(-(-(x,y),1(#())))                                          
        
          -(1(x),0(y)) =  1 + x                                                        
                       >= 1 + x                                                        
                       =  1(-(x,y))                                                    
        
          -(1(x),1(y)) =  1 + x                                                        
                       >= 1 + x                                                        
                       =  0(-(x,y))                                                    
        
                0(#()) =  1                                                            
                       >= 0                                                            
                       =  #()                                                          
        
            size(l(x)) =  1                                                            
                       >= 1                                                            
                       =  1(#())                                                       
        
        size(n(x,y,z)) =  1 + x + y + z                                                
                       >= 1 + x + y                                                    
                       =  +(+(size(x),size(y)),1(#()))                                 
        
******* Step 1.b:7.b:3.a:4.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/4}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:7.b:3.a:4.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
            wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/4}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:-#(0(x),0(y)) -> c_10(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          2:W:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
             -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          3:W:-#(1(x),0(y)) -> c_12(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          4:W:-#(1(x),1(y)) -> c_13(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
          5:W:wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
             -->_4 wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z)):5
             -->_3 wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z)):5
             -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):4
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):3
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):2
             -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):1
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: wb#(n(x,y,z)) -> c_39(-#(size(y),size(z)),-#(size(z),size(y)),wb#(y),wb#(z))
          1: -#(0(x),0(y)) -> c_10(-#(x,y))
          4: -#(1(x),1(y)) -> c_13(-#(x,y))
          3: -#(1(x),0(y)) -> c_12(-#(x,y))
          2: -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
******* Step 1.b:7.b:3.a:4.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/4}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 1.b:7.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak DPs:
            -#(0(x),0(y)) -> c_10(-#(x,y))
            -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
            -#(1(x),0(y)) -> c_12(-#(x,y))
            -#(1(x),1(y)) -> c_13(-#(x,y))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/13}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
             -->_4 min#(n(x,y,z)) -> c_31(min#(y)):8
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):7
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
          
          2:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          3:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          4:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          5:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          6:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          7:S:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):7
          
          8:S:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):8
          
          9:S:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
          
          10:S:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(y),size(z)))
                                    ,-#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(z),size(y)))
                                    ,-#(size(z),size(y))
                                    ,size#(z)
                                    ,size#(y)
                                    ,wb#(y)
                                    ,wb#(z))
             -->_9 -#(1(x),1(y)) -> c_13(-#(x,y)):14
             -->_5 -#(1(x),1(y)) -> c_13(-#(x,y)):14
             -->_9 -#(1(x),0(y)) -> c_12(-#(x,y)):13
             -->_5 -#(1(x),0(y)) -> c_12(-#(x,y)):13
             -->_9 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):12
             -->_5 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):12
             -->_9 -#(0(x),0(y)) -> c_10(-#(x,y)):11
             -->_5 -#(0(x),0(y)) -> c_10(-#(x,y)):11
             -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):10
             -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):10
             -->_11 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_10 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_7 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_8 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_8 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          11:W:-#(0(x),0(y)) -> c_10(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):14
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):13
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):12
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):11
          
          12:W:-#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
             -->_2 -#(1(x),1(y)) -> c_13(-#(x,y)):14
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):14
             -->_2 -#(1(x),0(y)) -> c_12(-#(x,y)):13
             -->_2 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):12
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):12
             -->_2 -#(0(x),0(y)) -> c_10(-#(x,y)):11
          
          13:W:-#(1(x),0(y)) -> c_12(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):14
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):13
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):12
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):11
          
          14:W:-#(1(x),1(y)) -> c_13(-#(x,y))
             -->_1 -#(1(x),1(y)) -> c_13(-#(x,y)):14
             -->_1 -#(1(x),0(y)) -> c_12(-#(x,y)):13
             -->_1 -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y)):12
             -->_1 -#(0(x),0(y)) -> c_10(-#(x,y)):11
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          14: -#(1(x),1(y)) -> c_13(-#(x,y))
          13: -#(1(x),0(y)) -> c_12(-#(x,y))
          12: -#(0(x),1(y)) -> c_11(-#(-(x,y),1(#())),-#(x,y))
          11: -#(0(x),0(y)) -> c_10(-#(x,y))
**** Step 1.b:7.b:3.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,-#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,-#(size(z),size(y))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/13}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
             -->_4 min#(n(x,y,z)) -> c_31(min#(y)):8
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):7
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
          
          2:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          3:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          4:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          5:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          6:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          7:S:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):7
          
          8:S:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):8
          
          9:S:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
          
          10:S:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(y),size(z)))
                                    ,-#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(z),size(y)))
                                    ,-#(size(z),size(y))
                                    ,size#(z)
                                    ,size#(y)
                                    ,wb#(y)
                                    ,wb#(z))
             -->_13 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):10
             -->_12 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,-#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,-#(size(z),size(y))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):10
             -->_11 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_10 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_7 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_8 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_8 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                               ,size#(y)
                               ,size#(z)
                               ,ge#(1(#()),-(size(y),size(z)))
                               ,size#(y)
                               ,size#(z)
                               ,ge#(1(#()),-(size(z),size(y)))
                               ,size#(z)
                               ,size#(y)
                               ,wb#(y)
                               ,wb#(z))
**** Step 1.b:7.b:3.b:3: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/11}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
              ge#(#(),0(x)) -> c_20(ge#(#(),x))
              ge#(0(x),0(y)) -> c_22(ge#(x,y))
              ge#(0(x),1(y)) -> c_23(ge#(y,x))
              ge#(1(x),0(y)) -> c_24(ge#(x,y))
              ge#(1(x),1(y)) -> c_25(ge#(x,y))
              max#(n(x,y,z)) -> c_29(max#(z))
              min#(n(x,y,z)) -> c_31(min#(y))
          - Weak DPs:
              size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(y),size(z)))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(z),size(y)))
                                   ,size#(z)
                                   ,size#(y)
                                   ,wb#(y)
                                   ,wb#(z))
          - Weak TRS:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              max(l(x)) -> x
              max(n(x,y,z)) -> max(z)
              min(l(x)) -> x
              min(n(x,y,z)) -> min(y)
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          - Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
              ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0
              ,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0
              ,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0
              ,c_35/2,c_36/0,c_37/0,c_38/0,c_39/11}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
              ,wb#} and constructors {#,1,false,l,n,true}
        
        Problem (S)
          - Strict DPs:
              size#(n(x,y,z)) -> c_35(size#(x),size#(y))
              wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(y),size(z)))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(z),size(y)))
                                   ,size#(z)
                                   ,size#(y)
                                   ,wb#(y)
                                   ,wb#(z))
          - Weak DPs:
              bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
              ge#(#(),0(x)) -> c_20(ge#(#(),x))
              ge#(0(x),0(y)) -> c_22(ge#(x,y))
              ge#(0(x),1(y)) -> c_23(ge#(y,x))
              ge#(1(x),0(y)) -> c_24(ge#(x,y))
              ge#(1(x),1(y)) -> c_25(ge#(x,y))
              max#(n(x,y,z)) -> c_29(max#(z))
              min#(n(x,y,z)) -> c_31(min#(y))
          - Weak TRS:
              +(x,#()) -> x
              +(x,+(y,z)) -> +(+(x,y),z)
              +(#(),x) -> x
              +(0(x),0(y)) -> 0(+(x,y))
              +(0(x),1(y)) -> 1(+(x,y))
              +(1(x),0(y)) -> 1(+(x,y))
              +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
              -(x,#()) -> x
              -(#(),x) -> #()
              -(0(x),0(y)) -> 0(-(x,y))
              -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
              -(1(x),0(y)) -> 1(-(x,y))
              -(1(x),1(y)) -> 0(-(x,y))
              0(#()) -> #()
              max(l(x)) -> x
              max(n(x,y,z)) -> max(z)
              min(l(x)) -> x
              min(n(x,y,z)) -> min(y)
              size(l(x)) -> 1(#())
              size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
          - Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
              ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0
              ,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0
              ,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0
              ,c_35/2,c_36/0,c_37/0,c_38/0,c_39/11}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
              ,wb#} and constructors {#,1,false,l,n,true}
***** Step 1.b:7.b:3.b:3.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
        - Weak DPs:
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/11}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
             -->_4 min#(n(x,y,z)) -> c_31(min#(y)):8
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):7
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
          
          2:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          3:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
          
          4:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
          
          5:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
          
          6:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
          
          7:S:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):7
          
          8:S:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):8
          
          9:W:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
          
          10:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(y),size(z)))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(z),size(y)))
                                    ,size#(z)
                                    ,size#(y)
                                    ,wb#(y)
                                    ,wb#(z))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_7 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_7 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_9 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_8 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_5 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):9
             -->_11 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):10
             -->_10 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):10
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          9: size#(n(x,y,z)) -> c_35(size#(x),size#(y))
***** Step 1.b:7.b:3.b:3.a:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/11}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
             -->_4 min#(n(x,y,z)) -> c_31(min#(y)):8
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):7
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
          
          2:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          3:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
          
          4:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
          
          5:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
          
          6:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
          
          7:S:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):7
          
          8:S:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):8
          
          10:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(y),size(z)))
                                    ,size#(y)
                                    ,size#(z)
                                    ,ge#(1(#()),-(size(z),size(y)))
                                    ,size#(z)
                                    ,size#(y)
                                    ,wb#(y)
                                    ,wb#(z))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_7 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_7 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_11 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):10
             -->_10 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):10
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                               ,ge#(1(#()),-(size(y),size(z)))
                               ,ge#(1(#()),-(size(z),size(y)))
                               ,wb#(y)
                               ,wb#(z))
***** Step 1.b:7.b:3.b:3.a:3: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          8: min#(n(x,y,z)) -> c_31(min#(y))
          
        The strictly oriented rules are moved into the weak component.
****** Step 1.b:7.b:3.b:3.a:3.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_18) = {1,2,3,4,5,6},
          uargs(c_20) = {1},
          uargs(c_22) = {1},
          uargs(c_23) = {1},
          uargs(c_24) = {1},
          uargs(c_25) = {1},
          uargs(c_29) = {1},
          uargs(c_31) = {1},
          uargs(c_39) = {1,2,3,4,5}
        
        Following symbols are considered usable:
          {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
        TcT has computed the following interpretation:
              p(#) = 1                          
              p(+) = 0                          
              p(-) = 0                          
              p(0) = 1                          
              p(1) = 0                          
            p(and) = 0                          
             p(bs) = 0                          
          p(false) = 0                          
             p(ge) = 0                          
             p(if) = 0                          
              p(l) = 0                          
            p(max) = 0                          
            p(min) = x1                         
              p(n) = 1 + x2 + x3                
            p(not) = 0                          
           p(size) = 0                          
           p(true) = 0                          
            p(val) = 0                          
             p(wb) = 0                          
             p(+#) = 0                          
             p(-#) = 0                          
             p(0#) = 0                          
           p(and#) = 0                          
            p(bs#) = 1 + x1 + x1^2              
            p(ge#) = 0                          
            p(if#) = 0                          
           p(max#) = 1                          
           p(min#) = x1                         
           p(not#) = 0                          
          p(size#) = 0                          
           p(val#) = 0                          
            p(wb#) = x1 + x1^2                  
            p(c_1) = 0                          
            p(c_2) = 0                          
            p(c_3) = 0                          
            p(c_4) = 0                          
            p(c_5) = 0                          
            p(c_6) = 0                          
            p(c_7) = 0                          
            p(c_8) = 0                          
            p(c_9) = 0                          
           p(c_10) = 0                          
           p(c_11) = 0                          
           p(c_12) = 0                          
           p(c_13) = 0                          
           p(c_14) = 0                          
           p(c_15) = 0                          
           p(c_16) = 0                          
           p(c_17) = 0                          
           p(c_18) = x1 + x2 + x3 + x4 + x5 + x6
           p(c_19) = 0                          
           p(c_20) = x1                         
           p(c_21) = 0                          
           p(c_22) = x1                         
           p(c_23) = x1                         
           p(c_24) = x1                         
           p(c_25) = x1                         
           p(c_26) = 0                          
           p(c_27) = 0                          
           p(c_28) = 0                          
           p(c_29) = x1                         
           p(c_30) = 0                          
           p(c_31) = x1                         
           p(c_32) = 0                          
           p(c_33) = 0                          
           p(c_34) = 0                          
           p(c_35) = 0                          
           p(c_36) = 0                          
           p(c_37) = 0                          
           p(c_38) = 0                          
           p(c_39) = 1 + x1 + x2 + x3 + x4 + x5 
        
        Following rules are strictly oriented:
        min#(n(x,y,z)) = 1 + y + z    
                       > y            
                       = c_31(min#(y))
        
        
        Following rules are (at-least) weakly oriented:
         bs#(n(x,y,z)) =  3 + 3*y + 2*y*z + y^2 + 3*z + z^2                                                                     
                       >= 3 + y + y^2 + 2*z + z^2                                                                               
                       =  c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))                                       
        
         ge#(#(),0(x)) =  0                                                                                                     
                       >= 0                                                                                                     
                       =  c_20(ge#(#(),x))                                                                                      
        
        ge#(0(x),0(y)) =  0                                                                                                     
                       >= 0                                                                                                     
                       =  c_22(ge#(x,y))                                                                                        
        
        ge#(0(x),1(y)) =  0                                                                                                     
                       >= 0                                                                                                     
                       =  c_23(ge#(y,x))                                                                                        
        
        ge#(1(x),0(y)) =  0                                                                                                     
                       >= 0                                                                                                     
                       =  c_24(ge#(x,y))                                                                                        
        
        ge#(1(x),1(y)) =  0                                                                                                     
                       >= 0                                                                                                     
                       =  c_25(ge#(x,y))                                                                                        
        
        max#(n(x,y,z)) =  1                                                                                                     
                       >= 1                                                                                                     
                       =  c_29(max#(z))                                                                                         
        
         wb#(n(x,y,z)) =  2 + 3*y + 2*y*z + y^2 + 3*z + z^2                                                                     
                       >= 1 + y + y^2 + z + z^2                                                                                 
                       =  c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
        
****** Step 1.b:7.b:3.b:3.a:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
        - Weak DPs:
            min#(n(x,y,z)) -> c_31(min#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:7.b:3.b:3.a:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
        - Weak DPs:
            min#(n(x,y,z)) -> c_31(min#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
             -->_4 min#(n(x,y,z)) -> c_31(min#(y)):8
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):7
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
          
          2:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          3:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          4:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          5:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          6:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          7:S:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):7
          
          8:W:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):8
          
          9:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                   ,ge#(1(#()),-(size(y),size(z)))
                                   ,ge#(1(#()),-(size(z),size(y)))
                                   ,wb#(y)
                                   ,wb#(z))
             -->_5 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                        ,ge#(1(#()),-(size(y),size(z)))
                                        ,ge#(1(#()),-(size(z),size(y)))
                                        ,wb#(y)
                                        ,wb#(z)):9
             -->_4 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                        ,ge#(1(#()),-(size(y),size(z)))
                                        ,ge#(1(#()),-(size(z),size(y)))
                                        ,wb#(y)
                                        ,wb#(z)):9
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          8: min#(n(x,y,z)) -> c_31(min#(y))
****** Step 1.b:7.b:3.b:3.a:3.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):7
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):1
          
          2:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          3:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          4:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          5:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          6:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          7:S:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):7
          
          9:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                   ,ge#(1(#()),-(size(y),size(z)))
                                   ,ge#(1(#()),-(size(z),size(y)))
                                   ,wb#(y)
                                   ,wb#(z))
             -->_5 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                        ,ge#(1(#()),-(size(y),size(z)))
                                        ,ge#(1(#()),-(size(z),size(y)))
                                        ,wb#(y)
                                        ,wb#(z)):9
             -->_4 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                        ,ge#(1(#()),-(size(y),size(z)))
                                        ,ge#(1(#()),-(size(z),size(y)))
                                        ,wb#(y)
                                        ,wb#(z)):9
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
****** Step 1.b:7.b:3.b:3.a:3.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/5,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
          7: max#(n(x,y,z)) -> c_29(max#(z))
          
        The strictly oriented rules are moved into the weak component.
******* Step 1.b:7.b:3.b:3.a:3.b:3.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/5,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_18) = {1,2,3,4,5},
          uargs(c_20) = {1},
          uargs(c_22) = {1},
          uargs(c_23) = {1},
          uargs(c_24) = {1},
          uargs(c_25) = {1},
          uargs(c_29) = {1},
          uargs(c_39) = {1,2,3,4,5}
        
        Following symbols are considered usable:
          {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
        TcT has computed the following interpretation:
              p(#) = 0                         
              p(+) = x2                        
              p(-) = x1                        
              p(0) = 1 + x1                    
              p(1) = x1                        
            p(and) = 0                         
             p(bs) = 0                         
          p(false) = 0                         
             p(ge) = 0                         
             p(if) = 0                         
              p(l) = 0                         
            p(max) = 1                         
            p(min) = 0                         
              p(n) = 1 + x2 + x3               
            p(not) = 0                         
           p(size) = 0                         
           p(true) = 0                         
            p(val) = 0                         
             p(wb) = 0                         
             p(+#) = 0                         
             p(-#) = 0                         
             p(0#) = 0                         
           p(and#) = 0                         
            p(bs#) = x1^2                      
            p(ge#) = 0                         
            p(if#) = 0                         
           p(max#) = x1                        
           p(min#) = 0                         
           p(not#) = 0                         
          p(size#) = 0                         
           p(val#) = 0                         
            p(wb#) = x1^2                      
            p(c_1) = 0                         
            p(c_2) = 0                         
            p(c_3) = 0                         
            p(c_4) = 0                         
            p(c_5) = 0                         
            p(c_6) = 0                         
            p(c_7) = 0                         
            p(c_8) = 0                         
            p(c_9) = 0                         
           p(c_10) = 0                         
           p(c_11) = 0                         
           p(c_12) = 0                         
           p(c_13) = 0                         
           p(c_14) = 0                         
           p(c_15) = 0                         
           p(c_16) = 0                         
           p(c_17) = 0                         
           p(c_18) = x1 + x2 + x3 + x4 + x5    
           p(c_19) = 0                         
           p(c_20) = x1                        
           p(c_21) = 0                         
           p(c_22) = x1                        
           p(c_23) = x1                        
           p(c_24) = x1                        
           p(c_25) = x1                        
           p(c_26) = 0                         
           p(c_27) = 0                         
           p(c_28) = 0                         
           p(c_29) = x1                        
           p(c_30) = 0                         
           p(c_31) = 0                         
           p(c_32) = 0                         
           p(c_33) = 0                         
           p(c_34) = 0                         
           p(c_35) = 0                         
           p(c_36) = 0                         
           p(c_37) = 0                         
           p(c_38) = 0                         
           p(c_39) = 1 + x1 + x2 + x3 + x4 + x5
        
        Following rules are strictly oriented:
         bs#(n(x,y,z)) = 1 + 2*y + 2*y*z + y^2 + 2*z + z^2                      
                       > y + y^2 + z^2                                          
                       = c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
        
        max#(n(x,y,z)) = 1 + y + z                                              
                       > z                                                      
                       = c_29(max#(z))                                          
        
        
        Following rules are (at-least) weakly oriented:
         ge#(#(),0(x)) =  0                                                                                                     
                       >= 0                                                                                                     
                       =  c_20(ge#(#(),x))                                                                                      
        
        ge#(0(x),0(y)) =  0                                                                                                     
                       >= 0                                                                                                     
                       =  c_22(ge#(x,y))                                                                                        
        
        ge#(0(x),1(y)) =  0                                                                                                     
                       >= 0                                                                                                     
                       =  c_23(ge#(y,x))                                                                                        
        
        ge#(1(x),0(y)) =  0                                                                                                     
                       >= 0                                                                                                     
                       =  c_24(ge#(x,y))                                                                                        
        
        ge#(1(x),1(y)) =  0                                                                                                     
                       >= 0                                                                                                     
                       =  c_25(ge#(x,y))                                                                                        
        
         wb#(n(x,y,z)) =  1 + 2*y + 2*y*z + y^2 + 2*z + z^2                                                                     
                       >= 1 + y^2 + z^2                                                                                         
                       =  c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
        
******* Step 1.b:7.b:3.b:3.a:3.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
        - Weak DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
            max#(n(x,y,z)) -> c_29(max#(z))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/5,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:7.b:3.b:3.a:3.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
        - Weak DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
            max#(n(x,y,z)) -> c_29(max#(z))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/5,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
          
          2:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
          
          3:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
          
          4:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
          
          5:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
          
          6:W:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):7
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z)):6
             -->_4 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z)):6
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
          
          7:W:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):7
          
          8:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                   ,ge#(1(#()),-(size(y),size(z)))
                                   ,ge#(1(#()),-(size(z),size(y)))
                                   ,wb#(y)
                                   ,wb#(z))
             -->_5 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                        ,ge#(1(#()),-(size(y),size(z)))
                                        ,ge#(1(#()),-(size(z),size(y)))
                                        ,wb#(y)
                                        ,wb#(z)):8
             -->_4 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                        ,ge#(1(#()),-(size(y),size(z)))
                                        ,ge#(1(#()),-(size(z),size(y)))
                                        ,wb#(y)
                                        ,wb#(z)):8
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          7: max#(n(x,y,z)) -> c_29(max#(z))
******* Step 1.b:7.b:3.b:3.a:3.b:3.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
        - Weak DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/5,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
          
          2:S:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
          
          3:S:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
          
          4:S:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
          
          5:S:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
          
          6:W:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z))
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z)):6
             -->_4 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),bs#(y),bs#(z)):6
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
          
          8:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                   ,ge#(1(#()),-(size(y),size(z)))
                                   ,ge#(1(#()),-(size(z),size(y)))
                                   ,wb#(y)
                                   ,wb#(z))
             -->_5 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                        ,ge#(1(#()),-(size(y),size(z)))
                                        ,ge#(1(#()),-(size(z),size(y)))
                                        ,wb#(y)
                                        ,wb#(z)):8
             -->_4 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                        ,ge#(1(#()),-(size(y),size(z)))
                                        ,ge#(1(#()),-(size(z),size(y)))
                                        ,wb#(y)
                                        ,wb#(z)):8
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):5
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z))
******* Step 1.b:7.b:3.b:3.a:3.b:3.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
        - Weak DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/4,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: ge#(#(),0(x)) -> c_20(ge#(#(),x))
          2: ge#(0(x),0(y)) -> c_22(ge#(x,y))
          3: ge#(0(x),1(y)) -> c_23(ge#(y,x))
          4: ge#(1(x),0(y)) -> c_24(ge#(x,y))
          5: ge#(1(x),1(y)) -> c_25(ge#(x,y))
          
        The strictly oriented rules are moved into the weak component.
******** Step 1.b:7.b:3.b:3.a:3.b:3.b:3.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
        - Weak DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/4,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_18) = {1,2,3,4},
          uargs(c_20) = {1},
          uargs(c_22) = {1},
          uargs(c_23) = {1},
          uargs(c_24) = {1},
          uargs(c_25) = {1},
          uargs(c_39) = {1,2,3,4,5}
        
        Following symbols are considered usable:
          {+,-,0,max,min,size,+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
        TcT has computed the following interpretation:
              p(#) = 0                     
              p(+) = x1 + x2               
              p(-) = x1                    
              p(0) = 1 + x1                
              p(1) = 1 + x1                
            p(and) = 0                     
             p(bs) = 0                     
          p(false) = 0                     
             p(ge) = 0                     
             p(if) = 0                     
              p(l) = 1 + x1                
            p(max) = x1                    
            p(min) = x1                    
              p(n) = 1 + x1 + x2 + x3      
            p(not) = 0                     
           p(size) = x1                    
           p(true) = 0                     
            p(val) = 0                     
             p(wb) = 0                     
             p(+#) = 0                     
             p(-#) = 0                     
             p(0#) = 0                     
           p(and#) = 0                     
            p(bs#) = x1^2                  
            p(ge#) = x1 + x2               
            p(if#) = 0                     
           p(max#) = 0                     
           p(min#) = 0                     
           p(not#) = 0                     
          p(size#) = 0                     
           p(val#) = 0                     
            p(wb#) = x1 + x1^2             
            p(c_1) = 0                     
            p(c_2) = 0                     
            p(c_3) = 0                     
            p(c_4) = 0                     
            p(c_5) = 0                     
            p(c_6) = 0                     
            p(c_7) = 0                     
            p(c_8) = 0                     
            p(c_9) = 0                     
           p(c_10) = 0                     
           p(c_11) = 0                     
           p(c_12) = 0                     
           p(c_13) = 0                     
           p(c_14) = 0                     
           p(c_15) = 0                     
           p(c_16) = 0                     
           p(c_17) = 0                     
           p(c_18) = 1 + x1 + x2 + x3 + x4 
           p(c_19) = 0                     
           p(c_20) = x1                    
           p(c_21) = 0                     
           p(c_22) = x1                    
           p(c_23) = x1                    
           p(c_24) = x1                    
           p(c_25) = x1                    
           p(c_26) = 0                     
           p(c_27) = 0                     
           p(c_28) = 0                     
           p(c_29) = 0                     
           p(c_30) = 0                     
           p(c_31) = 0                     
           p(c_32) = 0                     
           p(c_33) = 0                     
           p(c_34) = 0                     
           p(c_35) = 0                     
           p(c_36) = 0                     
           p(c_37) = 0                     
           p(c_38) = 0                     
           p(c_39) = x1 + x2 + x3 + x4 + x5
        
        Following rules are strictly oriented:
         ge#(#(),0(x)) = 1 + x           
                       > x               
                       = c_20(ge#(#(),x))
        
        ge#(0(x),0(y)) = 2 + x + y       
                       > x + y           
                       = c_22(ge#(x,y))  
        
        ge#(0(x),1(y)) = 2 + x + y       
                       > x + y           
                       = c_23(ge#(y,x))  
        
        ge#(1(x),0(y)) = 2 + x + y       
                       > x + y           
                       = c_24(ge#(x,y))  
        
        ge#(1(x),1(y)) = 2 + x + y       
                       > x + y           
                       = c_25(ge#(x,y))  
        
        
        Following rules are (at-least) weakly oriented:
         bs#(n(x,y,z)) =  1 + 2*x + 2*x*y + 2*x*z + x^2 + 2*y + 2*y*z + y^2 + 2*z + z^2                                         
                       >= 1 + 2*x + y + y^2 + z + z^2                                                                           
                       =  c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z))                                                       
        
         wb#(n(x,y,z)) =  2 + 3*x + 2*x*y + 2*x*z + x^2 + 3*y + 2*y*z + y^2 + 3*z + z^2                                         
                       >= 2 + 3*y + y^2 + 3*z + z^2                                                                             
                       =  c_39(ge#(size(y),size(z)),ge#(1(#()),-(size(y),size(z))),ge#(1(#()),-(size(z),size(y))),wb#(y),wb#(z))
        
              +(x,#()) =  x                                                                                                     
                       >= x                                                                                                     
                       =  x                                                                                                     
        
           +(x,+(y,z)) =  x + y + z                                                                                             
                       >= x + y + z                                                                                             
                       =  +(+(x,y),z)                                                                                           
        
              +(#(),x) =  x                                                                                                     
                       >= x                                                                                                     
                       =  x                                                                                                     
        
          +(0(x),0(y)) =  2 + x + y                                                                                             
                       >= 1 + x + y                                                                                             
                       =  0(+(x,y))                                                                                             
        
          +(0(x),1(y)) =  2 + x + y                                                                                             
                       >= 1 + x + y                                                                                             
                       =  1(+(x,y))                                                                                             
        
          +(1(x),0(y)) =  2 + x + y                                                                                             
                       >= 1 + x + y                                                                                             
                       =  1(+(x,y))                                                                                             
        
          +(1(x),1(y)) =  2 + x + y                                                                                             
                       >= 2 + x + y                                                                                             
                       =  0(+(+(x,y),1(#())))                                                                                   
        
              -(x,#()) =  x                                                                                                     
                       >= x                                                                                                     
                       =  x                                                                                                     
        
              -(#(),x) =  0                                                                                                     
                       >= 0                                                                                                     
                       =  #()                                                                                                   
        
          -(0(x),0(y)) =  1 + x                                                                                                 
                       >= 1 + x                                                                                                 
                       =  0(-(x,y))                                                                                             
        
          -(0(x),1(y)) =  1 + x                                                                                                 
                       >= 1 + x                                                                                                 
                       =  1(-(-(x,y),1(#())))                                                                                   
        
          -(1(x),0(y)) =  1 + x                                                                                                 
                       >= 1 + x                                                                                                 
                       =  1(-(x,y))                                                                                             
        
          -(1(x),1(y)) =  1 + x                                                                                                 
                       >= 1 + x                                                                                                 
                       =  0(-(x,y))                                                                                             
        
                0(#()) =  1                                                                                                     
                       >= 0                                                                                                     
                       =  #()                                                                                                   
        
             max(l(x)) =  1 + x                                                                                                 
                       >= x                                                                                                     
                       =  x                                                                                                     
        
         max(n(x,y,z)) =  1 + x + y + z                                                                                         
                       >= z                                                                                                     
                       =  max(z)                                                                                                
        
             min(l(x)) =  1 + x                                                                                                 
                       >= x                                                                                                     
                       =  x                                                                                                     
        
         min(n(x,y,z)) =  1 + x + y + z                                                                                         
                       >= y                                                                                                     
                       =  min(y)                                                                                                
        
            size(l(x)) =  1 + x                                                                                                 
                       >= 1                                                                                                     
                       =  1(#())                                                                                                
        
        size(n(x,y,z)) =  1 + x + y + z                                                                                         
                       >= 1 + x + y                                                                                             
                       =  +(+(size(x),size(y)),1(#()))                                                                          
        
******** Step 1.b:7.b:3.b:3.a:3.b:3.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/4,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******** Step 1.b:7.b:3.b:3.a:3.b:3.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/4,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z))
             -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_2 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_2 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_2 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
             -->_4 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z)):1
             -->_3 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z)):1
          
          2:W:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          3:W:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          4:W:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          5:W:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          6:W:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
          7:W:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                   ,ge#(1(#()),-(size(y),size(z)))
                                   ,ge#(1(#()),-(size(z),size(y)))
                                   ,wb#(y)
                                   ,wb#(z))
             -->_5 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                        ,ge#(1(#()),-(size(y),size(z)))
                                        ,ge#(1(#()),-(size(z),size(y)))
                                        ,wb#(y)
                                        ,wb#(z)):7
             -->_4 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                        ,ge#(1(#()),-(size(y),size(z)))
                                        ,ge#(1(#()),-(size(z),size(y)))
                                        ,wb#(y)
                                        ,wb#(z)):7
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_2 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):6
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_2 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):5
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):4
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):3
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          7: wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                  ,ge#(1(#()),-(size(y),size(z)))
                                  ,ge#(1(#()),-(size(z),size(y)))
                                  ,wb#(y)
                                  ,wb#(z))
          1: bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),ge#(min(z),x),bs#(y),bs#(z))
          6: ge#(1(x),1(y)) -> c_25(ge#(x,y))
          5: ge#(1(x),0(y)) -> c_24(ge#(x,y))
          4: ge#(0(x),1(y)) -> c_23(ge#(y,x))
          3: ge#(0(x),0(y)) -> c_22(ge#(x,y))
          2: ge#(#(),0(x)) -> c_20(ge#(#(),x))
******** Step 1.b:7.b:3.b:3.a:3.b:3.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/4,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/5}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

***** Step 1.b:7.b:3.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak DPs:
            bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
            ge#(#(),0(x)) -> c_20(ge#(#(),x))
            ge#(0(x),0(y)) -> c_22(ge#(x,y))
            ge#(0(x),1(y)) -> c_23(ge#(y,x))
            ge#(1(x),0(y)) -> c_24(ge#(x,y))
            ge#(1(x),1(y)) -> c_25(ge#(x,y))
            max#(n(x,y,z)) -> c_29(max#(z))
            min#(n(x,y,z)) -> c_31(min#(y))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/11}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
          
          2:S:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(y),size(z)))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(z),size(y)))
                                   ,size#(z)
                                   ,size#(y)
                                   ,wb#(y)
                                   ,wb#(z))
             -->_7 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
             -->_4 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
             -->_7 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
             -->_4 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):6
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):5
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
             -->_11 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):2
             -->_10 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):2
             -->_9 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_8 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_5 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
          
          3:W:bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
             -->_4 min#(n(x,y,z)) -> c_31(min#(y)):10
             -->_2 max#(n(x,y,z)) -> c_29(max#(z)):9
             -->_3 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
             -->_3 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
             -->_3 ge#(0(x),1(y)) -> c_23(ge#(y,x)):6
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):6
             -->_3 ge#(0(x),0(y)) -> c_22(ge#(x,y)):5
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):5
             -->_3 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
             -->_6 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):3
             -->_5 bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z)):3
          
          4:W:ge#(#(),0(x)) -> c_20(ge#(#(),x))
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
          
          5:W:ge#(0(x),0(y)) -> c_22(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):6
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):5
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
          
          6:W:ge#(0(x),1(y)) -> c_23(ge#(y,x))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):6
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):5
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
          
          7:W:ge#(1(x),0(y)) -> c_24(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):6
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):5
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
          
          8:W:ge#(1(x),1(y)) -> c_25(ge#(x,y))
             -->_1 ge#(1(x),1(y)) -> c_25(ge#(x,y)):8
             -->_1 ge#(1(x),0(y)) -> c_24(ge#(x,y)):7
             -->_1 ge#(0(x),1(y)) -> c_23(ge#(y,x)):6
             -->_1 ge#(0(x),0(y)) -> c_22(ge#(x,y)):5
             -->_1 ge#(#(),0(x)) -> c_20(ge#(#(),x)):4
          
          9:W:max#(n(x,y,z)) -> c_29(max#(z))
             -->_1 max#(n(x,y,z)) -> c_29(max#(z)):9
          
          10:W:min#(n(x,y,z)) -> c_31(min#(y))
             -->_1 min#(n(x,y,z)) -> c_31(min#(y)):10
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: bs#(n(x,y,z)) -> c_18(ge#(x,max(y)),max#(y),ge#(min(z),x),min#(z),bs#(y),bs#(z))
          9: max#(n(x,y,z)) -> c_29(max#(z))
          10: min#(n(x,y,z)) -> c_31(min#(y))
          8: ge#(1(x),1(y)) -> c_25(ge#(x,y))
          7: ge#(1(x),0(y)) -> c_24(ge#(x,y))
          6: ge#(0(x),1(y)) -> c_23(ge#(y,x))
          5: ge#(0(x),0(y)) -> c_22(ge#(x,y))
          4: ge#(#(),0(x)) -> c_20(ge#(#(),x))
***** Step 1.b:7.b:3.b:3.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(y),size(z)))
                                 ,size#(y)
                                 ,size#(z)
                                 ,ge#(1(#()),-(size(z),size(y)))
                                 ,size#(z)
                                 ,size#(y)
                                 ,wb#(y)
                                 ,wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/11}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
          
          2:S:wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(y),size(z)))
                                   ,size#(y)
                                   ,size#(z)
                                   ,ge#(1(#()),-(size(z),size(y)))
                                   ,size#(z)
                                   ,size#(y)
                                   ,wb#(y)
                                   ,wb#(z))
             -->_11 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):2
             -->_10 wb#(n(x,y,z)) -> c_39(ge#(size(y),size(z))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(y),size(z)))
                                         ,size#(y)
                                         ,size#(z)
                                         ,ge#(1(#()),-(size(z),size(y)))
                                         ,size#(z)
                                         ,size#(y)
                                         ,wb#(y)
                                         ,wb#(z)):2
             -->_9 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_8 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_5 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
***** Step 1.b:7.b:3.b:3.b:3: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        - Weak TRS:
            +(x,#()) -> x
            +(x,+(y,z)) -> +(+(x,y),z)
            +(#(),x) -> x
            +(0(x),0(y)) -> 0(+(x,y))
            +(0(x),1(y)) -> 1(+(x,y))
            +(1(x),0(y)) -> 1(+(x,y))
            +(1(x),1(y)) -> 0(+(+(x,y),1(#())))
            -(x,#()) -> x
            -(#(),x) -> #()
            -(0(x),0(y)) -> 0(-(x,y))
            -(0(x),1(y)) -> 1(-(-(x,y),1(#())))
            -(1(x),0(y)) -> 1(-(x,y))
            -(1(x),1(y)) -> 0(-(x,y))
            0(#()) -> #()
            max(l(x)) -> x
            max(n(x,y,z)) -> max(z)
            min(l(x)) -> x
            min(n(x,y,z)) -> min(y)
            size(l(x)) -> 1(#())
            size(n(x,y,z)) -> +(+(size(x),size(y)),1(#()))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          size#(n(x,y,z)) -> c_35(size#(x),size#(y))
          wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
***** Step 1.b:7.b:3.b:3.b:4: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              size#(n(x,y,z)) -> c_35(size#(x),size#(y))
          - Weak DPs:
              wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
          - Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
              ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0
              ,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0
              ,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0
              ,c_35/2,c_36/0,c_37/0,c_38/0,c_39/8}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
              ,wb#} and constructors {#,1,false,l,n,true}
        
        Problem (S)
          - Strict DPs:
              wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
          - Weak DPs:
              size#(n(x,y,z)) -> c_35(size#(x),size#(y))
          - Signature:
              {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
              ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0
              ,c_4/1,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0
              ,c_20/1,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0
              ,c_35/2,c_36/0,c_37/0,c_38/0,c_39/8}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
              ,wb#} and constructors {#,1,false,l,n,true}
****** Step 1.b:7.b:3.b:3.b:4.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: size#(n(x,y,z)) -> c_35(size#(x),size#(y))
          
        The strictly oriented rules are moved into the weak component.
******* Step 1.b:7.b:3.b:3.b:4.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_35) = {1,2},
          uargs(c_39) = {1,2,3,4,5,6,7,8}
        
        Following symbols are considered usable:
          {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
        TcT has computed the following interpretation:
              p(#) = 0                                         
              p(+) = 1 + x1^2 + x2                             
              p(-) = 1 + 4*x1*x2                               
              p(0) = 1 + 2*x1 + x1^2                           
              p(1) = 1                                         
            p(and) = 0                                         
             p(bs) = 2 + 4*x1                                  
          p(false) = 0                                         
             p(ge) = 2*x1^2 + 2*x2^2                           
             p(if) = 1 + x2^2 + x3 + x3^2                      
              p(l) = x1                                        
            p(max) = 1                                         
            p(min) = 4                                         
              p(n) = 1 + x1 + x2 + x3                          
            p(not) = x1^2                                      
           p(size) = 2 + x1                                    
           p(true) = 0                                         
            p(val) = 1                                         
             p(wb) = 4 + 2*x1 + x1^2                           
             p(+#) = 1 + x1 + x2                               
             p(-#) = x1 + x1^2 + x2 + 2*x2^2                   
             p(0#) = 2 + 4*x1 + x1^2                           
           p(and#) = 1 + x1*x2 + 2*x1^2 + x2                   
            p(bs#) = 2*x1 + 4*x1^2                             
            p(ge#) = 4 + 2*x1^2 + 2*x2                         
            p(if#) = x1 + 2*x1*x2 + x2 + 2*x2^2 + 4*x3 + 2*x3^2
           p(max#) = 0                                         
           p(min#) = 2 + x1                                    
           p(not#) = 1                                         
          p(size#) = x1                                        
           p(val#) = x1^2                                      
            p(wb#) = 1 + x1 + 4*x1^2                           
            p(c_1) = 1                                         
            p(c_2) = x1                                        
            p(c_3) = 0                                         
            p(c_4) = 0                                         
            p(c_5) = 1                                         
            p(c_6) = 1                                         
            p(c_7) = 0                                         
            p(c_8) = 1                                         
            p(c_9) = 0                                         
           p(c_10) = 1                                         
           p(c_11) = 0                                         
           p(c_12) = 0                                         
           p(c_13) = 1                                         
           p(c_14) = 0                                         
           p(c_15) = 0                                         
           p(c_16) = 0                                         
           p(c_17) = 0                                         
           p(c_18) = 1 + x6                                    
           p(c_19) = 1                                         
           p(c_20) = 1 + x1                                    
           p(c_21) = 1                                         
           p(c_22) = x1                                        
           p(c_23) = 0                                         
           p(c_24) = 1                                         
           p(c_25) = 1                                         
           p(c_26) = 0                                         
           p(c_27) = 0                                         
           p(c_28) = 1                                         
           p(c_29) = 0                                         
           p(c_30) = 1                                         
           p(c_31) = 1                                         
           p(c_32) = 0                                         
           p(c_33) = 1                                         
           p(c_34) = 0                                         
           p(c_35) = x1 + x2                                   
           p(c_36) = 0                                         
           p(c_37) = 0                                         
           p(c_38) = 1                                         
           p(c_39) = 1 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 
        
        Following rules are strictly oriented:
        size#(n(x,y,z)) = 1 + x + y + z          
                        > x + y                  
                        = c_35(size#(x),size#(y))
        
        
        Following rules are (at-least) weakly oriented:
        wb#(n(x,y,z)) =  6 + 9*x + 8*x*y + 8*x*z + 4*x^2 + 9*y + 8*y*z + 4*y^2 + 9*z + 4*z^2      
                      >= 3 + 4*y + 4*y^2 + 4*z + 4*z^2                                            
                      =  c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        
******* Step 1.b:7.b:3.b:3.b:4.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:7.b:3.b:3.b:4.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
          
          2:W:wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
             -->_8 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):2
             -->_7 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):2
             -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_5 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_4 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
             -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
          1: size#(n(x,y,z)) -> c_35(size#(x),size#(y))
******* Step 1.b:7.b:3.b:3.b:4.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

****** Step 1.b:7.b:3.b:3.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        - Weak DPs:
            size#(n(x,y,z)) -> c_35(size#(x),size#(y))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
             -->_6 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
             -->_5 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
             -->_4 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
             -->_3 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
             -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
             -->_8 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):1
             -->_7 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):1
          
          2:W:size#(n(x,y,z)) -> c_35(size#(x),size#(y))
             -->_2 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
             -->_1 size#(n(x,y,z)) -> c_35(size#(x),size#(y)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: size#(n(x,y,z)) -> c_35(size#(x),size#(y))
****** Step 1.b:7.b:3.b:3.b:4.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/8}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z))
             -->_8 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):1
             -->_7 wb#(n(x,y,z)) -> c_39(size#(y),size#(z),size#(y),size#(z),size#(z),size#(y),wb#(y),wb#(z)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z))
****** Step 1.b:7.b:3.b:3.b:4.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z))
          
        The strictly oriented rules are moved into the weak component.
******* Step 1.b:7.b:3.b:3.b:4.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_39) = {1,2}
        
        Following symbols are considered usable:
          {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#,wb#}
        TcT has computed the following interpretation:
              p(#) = [1]                                             
              p(+) = [4]                                             
              p(-) = [0]                                             
              p(0) = [0]                                             
              p(1) = [1] x1 + [0]                                    
            p(and) = [1]                                             
             p(bs) = [0]                                             
          p(false) = [0]                                             
             p(ge) = [1] x1 + [1] x2 + [0]                           
             p(if) = [1] x2 + [2] x3 + [1]                           
              p(l) = [1]                                             
            p(max) = [1]                                             
            p(min) = [0]                                             
              p(n) = [1] x1 + [1] x2 + [1] x3 + [1]                  
            p(not) = [0]                                             
           p(size) = [0]                                             
           p(true) = [0]                                             
            p(val) = [0]                                             
             p(wb) = [0]                                             
             p(+#) = [0]                                             
             p(-#) = [0]                                             
             p(0#) = [0]                                             
           p(and#) = [0]                                             
            p(bs#) = [0]                                             
            p(ge#) = [0]                                             
            p(if#) = [0]                                             
           p(max#) = [0]                                             
           p(min#) = [0]                                             
           p(not#) = [0]                                             
          p(size#) = [0]                                             
           p(val#) = [0]                                             
            p(wb#) = [9] x1 + [7]                                    
            p(c_1) = [0]                                             
            p(c_2) = [2] x1 + [1] x2 + [0]                           
            p(c_3) = [0]                                             
            p(c_4) = [1] x1 + [0]                                    
            p(c_5) = [8] x1 + [0]                                    
            p(c_6) = [1] x1 + [0]                                    
            p(c_7) = [1] x2 + [0]                                    
            p(c_8) = [0]                                             
            p(c_9) = [0]                                             
           p(c_10) = [1] x1 + [0]                                    
           p(c_11) = [8] x2 + [0]                                    
           p(c_12) = [1] x1 + [0]                                    
           p(c_13) = [1] x1 + [0]                                    
           p(c_14) = [0]                                             
           p(c_15) = [0]                                             
           p(c_16) = [0]                                             
           p(c_17) = [0]                                             
           p(c_18) = [1] x1 + [2] x2 + [1] x3 + [1] x4 + [8] x5 + [0]
           p(c_19) = [0]                                             
           p(c_20) = [0]                                             
           p(c_21) = [0]                                             
           p(c_22) = [1] x1 + [0]                                    
           p(c_23) = [0]                                             
           p(c_24) = [1] x1 + [0]                                    
           p(c_25) = [1] x1 + [0]                                    
           p(c_26) = [0]                                             
           p(c_27) = [0]                                             
           p(c_28) = [0]                                             
           p(c_29) = [0]                                             
           p(c_30) = [0]                                             
           p(c_31) = [2] x1 + [0]                                    
           p(c_32) = [2]                                             
           p(c_33) = [4]                                             
           p(c_34) = [0]                                             
           p(c_35) = [1]                                             
           p(c_36) = [2]                                             
           p(c_37) = [1]                                             
           p(c_38) = [8]                                             
           p(c_39) = [1] x1 + [1] x2 + [1]                           
        
        Following rules are strictly oriented:
        wb#(n(x,y,z)) = [9] x + [9] y + [9] z + [16]
                      > [9] y + [9] z + [15]        
                      = c_39(wb#(y),wb#(z))         
        
        
        Following rules are (at-least) weakly oriented:
        
******* Step 1.b:7.b:3.b:3.b:4.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:7.b:3.b:3.b:4.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z))
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z))
             -->_2 wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z)):1
             -->_1 wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: wb#(n(x,y,z)) -> c_39(wb#(y),wb#(z))
******* Step 1.b:7.b:3.b:3.b:4.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {+/2,-/2,0/1,and/2,bs/1,ge/2,if/3,max/1,min/1,not/1,size/1,val/1,wb/1,+#/2,-#/2,0#/1,and#/2,bs#/1,ge#/2
            ,if#/3,max#/1,min#/1,not#/1,size#/1,val#/1,wb#/1} / {#/0,1/1,false/0,l/1,n/3,true/0,c_1/0,c_2/2,c_3/0,c_4/1
            ,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/1,c_11/2,c_12/1,c_13/1,c_14/0,c_15/0,c_16/0,c_17/0,c_18/6,c_19/0,c_20/1
            ,c_21/0,c_22/1,c_23/1,c_24/1,c_25/1,c_26/0,c_27/0,c_28/0,c_29/1,c_30/0,c_31/1,c_32/0,c_33/0,c_34/0,c_35/2
            ,c_36/0,c_37/0,c_38/0,c_39/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,0#,and#,bs#,ge#,if#,max#,min#,not#,size#,val#
            ,wb#} and constructors {#,1,false,l,n,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^4))