* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
*(#(),x) -> #()
*(*(x,y),z) -> *(x,*(y,z))
*(0(x),y) -> 0(*(x,y))
*(1(x),y) -> +(0(*(x,y)),y)
+(x,#()) -> x
+(#(),x) -> x
+(+(x,y),z) -> +(x,+(y,z))
+(0(x),0(y)) -> 0(+(x,y))
+(0(x),1(y)) -> 1(+(x,y))
+(1(x),0(y)) -> 1(+(x,y))
+(1(x),1(y)) -> 0(+(+(x,y),1(#())))
0(#()) -> #()
prod(cons(x,l)) -> *(x,prod(l))
prod(nil()) -> 1(#())
sum(cons(x,l)) -> +(x,sum(l))
sum(nil()) -> 0(#())
- Signature:
{*/2,+/2,0/1,prod/1,sum/1} / {#/0,1/1,cons/2,nil/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {*,+,0,prod,sum} and constructors {#,1,cons,nil}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
*(#(),x) -> #()
*(*(x,y),z) -> *(x,*(y,z))
*(0(x),y) -> 0(*(x,y))
*(1(x),y) -> +(0(*(x,y)),y)
+(x,#()) -> x
+(#(),x) -> x
+(+(x,y),z) -> +(x,+(y,z))
+(0(x),0(y)) -> 0(+(x,y))
+(0(x),1(y)) -> 1(+(x,y))
+(1(x),0(y)) -> 1(+(x,y))
+(1(x),1(y)) -> 0(+(+(x,y),1(#())))
0(#()) -> #()
prod(cons(x,l)) -> *(x,prod(l))
prod(nil()) -> 1(#())
sum(cons(x,l)) -> +(x,sum(l))
sum(nil()) -> 0(#())
- Signature:
{*/2,+/2,0/1,prod/1,sum/1} / {#/0,1/1,cons/2,nil/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {*,+,0,prod,sum} and constructors {#,1,cons,nil}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
*(x,y){x -> 1(x)} =
*(1(x),y) ->^+ +(0(*(x,y)),y)
= C[*(x,y) = *(x,y){}]
WORST_CASE(Omega(n^1),?)