* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(t,x) -> f'(t,g(x))
            f'(triple(a,b,c),A()) -> f''(foldB(triple(s(a),0(),c),b))
            f'(triple(a,b,c),B()) -> f(triple(a,b,c),A())
            f'(triple(a,b,c),C()) -> triple(a,b,s(c))
            f''(triple(a,b,c)) -> foldC(triple(a,b,0()),c)
            fold(t,x,0()) -> t
            fold(t,x,s(n)) -> f(fold(t,x,n),x)
            foldB(t,0()) -> t
            foldB(t,s(n)) -> f(foldB(t,n),B())
            foldC(t,0()) -> t
            foldC(t,s(n)) -> f(foldC(t,n),C())
            g(A()) -> A()
            g(B()) -> A()
            g(B()) -> B()
            g(C()) -> A()
            g(C()) -> B()
            g(C()) -> C()
        - Signature:
            {f/2,f'/2,f''/1,fold/3,foldB/2,foldC/2,g/1} / {0/0,A/0,B/0,C/0,s/1,triple/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,f',f'',fold,foldB,foldC,g} and constructors {0,A,B,C,s
            ,triple}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(t,x) -> f'(t,g(x))
            f'(triple(a,b,c),A()) -> f''(foldB(triple(s(a),0(),c),b))
            f'(triple(a,b,c),B()) -> f(triple(a,b,c),A())
            f'(triple(a,b,c),C()) -> triple(a,b,s(c))
            f''(triple(a,b,c)) -> foldC(triple(a,b,0()),c)
            fold(t,x,0()) -> t
            fold(t,x,s(n)) -> f(fold(t,x,n),x)
            foldB(t,0()) -> t
            foldB(t,s(n)) -> f(foldB(t,n),B())
            foldC(t,0()) -> t
            foldC(t,s(n)) -> f(foldC(t,n),C())
            g(A()) -> A()
            g(B()) -> A()
            g(B()) -> B()
            g(C()) -> A()
            g(C()) -> B()
            g(C()) -> C()
        - Signature:
            {f/2,f'/2,f''/1,fold/3,foldB/2,foldC/2,g/1} / {0/0,A/0,B/0,C/0,s/1,triple/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,f',f'',fold,foldB,foldC,g} and constructors {0,A,B,C,s
            ,triple}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          fold(x,y,z){z -> s(z)} =
            fold(x,y,s(z)) ->^+ f(fold(x,y,z),y)
              = C[fold(x,y,z) = fold(x,y,z){}]

WORST_CASE(Omega(n^1),?)