* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            cond(true(),x) -> cond(odd(x),p(p(p(x))))
            odd(0()) -> false()
            odd(s(0())) -> true()
            odd(s(s(x))) -> odd(x)
            p(0()) -> 0()
            p(s(x)) -> x
        - Signature:
            {cond/2,odd/1,p/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond,odd,p} and constructors {0,false,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            cond(true(),x) -> cond(odd(x),p(p(p(x))))
            odd(0()) -> false()
            odd(s(0())) -> true()
            odd(s(s(x))) -> odd(x)
            p(0()) -> 0()
            p(s(x)) -> x
        - Signature:
            {cond/2,odd/1,p/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond,odd,p} and constructors {0,false,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          odd(x){x -> s(s(x))} =
            odd(s(s(x))) ->^+ odd(x)
              = C[odd(x) = odd(x){}]

WORST_CASE(Omega(n^1),?)