* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: cond(true(),x) -> cond(odd(x),p(x)) odd(0()) -> false() odd(s(0())) -> true() odd(s(s(x))) -> odd(x) p(0()) -> 0() p(s(x)) -> x - Signature: {cond/2,odd/1,p/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond,odd,p} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: cond(true(),x) -> cond(odd(x),p(x)) odd(0()) -> false() odd(s(0())) -> true() odd(s(s(x))) -> odd(x) p(0()) -> 0() p(s(x)) -> x - Signature: {cond/2,odd/1,p/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond,odd,p} and constructors {0,false,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: odd(x){x -> s(s(x))} = odd(s(s(x))) ->^+ odd(x) = C[odd(x) = odd(x){}] WORST_CASE(Omega(n^1),?)