0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳8 CpxRNTS
↳9 CompleteCoflocoProof (⇔, 279 ms)
↳10 BOUNDS(1, n^1)
cond(true, x, y) → cond(gr(x, y), y, x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
cond(true, x, y) → cond(gr(x, y), y, x) [1]
gr(0, x) → false [1]
gr(s(x), 0) → true [1]
gr(s(x), s(y)) → gr(x, y) [1]
cond(true, x, y) → cond(gr(x, y), y, x) [1]
gr(0, x) → false [1]
gr(s(x), 0) → true [1]
gr(s(x), s(y)) → gr(x, y) [1]
cond :: true:false → 0:s → 0:s → cond true :: true:false gr :: 0:s → 0:s → true:false 0 :: 0:s false :: true:false s :: 0:s → 0:s |
cond(v0, v1, v2) → null_cond [0]
null_cond
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
true => 1
0 => 0
false => 0
null_cond => 0
cond(z, z', z'') -{ 1 }→ cond(gr(x, y), y, x) :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0
cond(z, z', z'') -{ 0 }→ 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0
gr(z, z') -{ 1 }→ gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x
gr(z, z') -{ 1 }→ 1 :|: x >= 0, z = 1 + x, z' = 0
gr(z, z') -{ 1 }→ 0 :|: z' = x, x >= 0, z = 0
eq(start(V, V1, V2),0,[cond(V, V1, V2, Out)],[V >= 0,V1 >= 0,V2 >= 0]). eq(start(V, V1, V2),0,[gr(V, V1, Out)],[V >= 0,V1 >= 0]). eq(cond(V, V1, V2, Out),1,[gr(V3, V4, Ret0),cond(Ret0, V4, V3, Ret)],[Out = Ret,V1 = V3,V2 = V4,V = 1,V3 >= 0,V4 >= 0]). eq(gr(V, V1, Out),1,[],[Out = 0,V1 = V5,V5 >= 0,V = 0]). eq(gr(V, V1, Out),1,[],[Out = 1,V6 >= 0,V = 1 + V6,V1 = 0]). eq(gr(V, V1, Out),1,[gr(V7, V8, Ret1)],[Out = Ret1,V1 = 1 + V8,V7 >= 0,V8 >= 0,V = 1 + V7]). eq(cond(V, V1, V2, Out),0,[],[Out = 0,V9 >= 0,V2 = V10,V11 >= 0,V = V9,V1 = V11,V10 >= 0]). input_output_vars(cond(V,V1,V2,Out),[V,V1,V2],[Out]). input_output_vars(gr(V,V1,Out),[V,V1],[Out]). |
CoFloCo proof output:
Preprocessing Cost Relations
=====================================
#### Computed strongly connected components
0. recursive : [gr/3]
1. recursive : [cond/4]
2. non_recursive : [start/3]
#### Obtained direct recursion through partial evaluation
0. SCC is partially evaluated into gr/3
1. SCC is partially evaluated into cond/4
2. SCC is partially evaluated into start/3
Control-Flow Refinement of Cost Relations
=====================================
### Specialization of cost equations gr/3
* CE 8 is refined into CE [9]
* CE 7 is refined into CE [10]
* CE 6 is refined into CE [11]
### Cost equations --> "Loop" of gr/3
* CEs [10] --> Loop 7
* CEs [11] --> Loop 8
* CEs [9] --> Loop 9
### Ranking functions of CR gr(V,V1,Out)
* RF of phase [9]: [V,V1]
#### Partial ranking functions of CR gr(V,V1,Out)
* Partial RF of phase [9]:
- RF of loop [9:1]:
V
V1
### Specialization of cost equations cond/4
* CE 5 is refined into CE [12]
* CE 4 is refined into CE [13,14,15,16]
### Cost equations --> "Loop" of cond/4
* CEs [16] --> Loop 10
* CEs [15] --> Loop 11
* CEs [14] --> Loop 12
* CEs [13] --> Loop 13
* CEs [12] --> Loop 14
### Ranking functions of CR cond(V,V1,V2,Out)
#### Partial ranking functions of CR cond(V,V1,V2,Out)
### Specialization of cost equations start/3
* CE 2 is refined into CE [17,18,19,20]
* CE 3 is refined into CE [21,22,23,24]
### Cost equations --> "Loop" of start/3
* CEs [24] --> Loop 15
* CEs [22] --> Loop 16
* CEs [20] --> Loop 17
* CEs [19,23] --> Loop 18
* CEs [17,18] --> Loop 19
* CEs [21] --> Loop 20
### Ranking functions of CR start(V,V1,V2)
#### Partial ranking functions of CR start(V,V1,V2)
Computing Bounds
=====================================
#### Cost of chains of gr(V,V1,Out):
* Chain [[9],8]: 1*it(9)+1
Such that:it(9) =< V
with precondition: [Out=0,V>=1,V1>=V]
* Chain [[9],7]: 1*it(9)+1
Such that:it(9) =< V1
with precondition: [Out=1,V1>=1,V>=V1+1]
* Chain [8]: 1
with precondition: [V=0,Out=0,V1>=0]
* Chain [7]: 1
with precondition: [V1=0,Out=1,V>=1]
#### Cost of chains of cond(V,V1,V2,Out):
* Chain [14]: 0
with precondition: [Out=0,V>=0,V1>=0,V2>=0]
* Chain [13,14]: 2
with precondition: [V=1,V1=0,Out=0,V2>=0]
* Chain [12,14]: 2
with precondition: [V=1,V2=0,Out=0,V1>=1]
* Chain [12,13,14]: 4
with precondition: [V=1,V2=0,Out=0,V1>=1]
* Chain [11,14]: 1*s(1)+2
Such that:s(1) =< V1
with precondition: [V=1,Out=0,V1>=1,V2>=V1]
* Chain [10,14]: 1*s(2)+2
Such that:s(2) =< V2
with precondition: [V=1,Out=0,V2>=1,V1>=V2+1]
* Chain [10,11,14]: 2*s(1)+4
Such that:aux(1) =< V2
s(1) =< aux(1)
with precondition: [V=1,Out=0,V2>=1,V1>=V2+1]
#### Cost of chains of start(V,V1,V2):
* Chain [20]: 1
with precondition: [V=0,V1>=0]
* Chain [19]: 4
with precondition: [V>=0,V1>=0,V2>=0]
* Chain [18]: 1*s(6)+1*s(7)+2
Such that:s(7) =< V
s(6) =< V1
with precondition: [V>=1,V1>=V]
* Chain [17]: 3*s(9)+4
Such that:s(8) =< V2
s(9) =< s(8)
with precondition: [V=1,V2>=1,V1>=V2+1]
* Chain [16]: 1
with precondition: [V1=0,V>=1]
* Chain [15]: 1*s(10)+1
Such that:s(10) =< V1
with precondition: [V1>=1,V>=V1+1]
Closed-form bounds of start(V,V1,V2):
-------------------------------------
* Chain [20] with precondition: [V=0,V1>=0]
- Upper bound: 1
- Complexity: constant
* Chain [19] with precondition: [V>=0,V1>=0,V2>=0]
- Upper bound: 4
- Complexity: constant
* Chain [18] with precondition: [V>=1,V1>=V]
- Upper bound: V+V1+2
- Complexity: n
* Chain [17] with precondition: [V=1,V2>=1,V1>=V2+1]
- Upper bound: 3*V2+4
- Complexity: n
* Chain [16] with precondition: [V1=0,V>=1]
- Upper bound: 1
- Complexity: constant
* Chain [15] with precondition: [V1>=1,V>=V1+1]
- Upper bound: V1+1
- Complexity: n
### Maximum cost of start(V,V1,V2): max([V+V1+1,max([3,nat(V2)*3+3])])+1
Asymptotic class: n
* Total analysis performed in 180 ms.