(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
cond1(true, x, y) → cond2(gr(y, 0), x, y)
cond2(true, x, y) → cond2(gr(y, 0), x, p(y))
cond2(false, x, y) → cond1(gr(x, 0), p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond1(true, z0, z1) → cond2(gr(z1, 0), z0, z1)
cond2(true, z0, z1) → cond2(gr(z1, 0), z0, p(z1))
cond2(false, z0, z1) → cond1(gr(z0, 0), p(z0), z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1), GR(z1, 0))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), z0, p(z1)), GR(z1, 0), P(z1))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0), P(z0))
GR(0, z0) → c3
GR(s(z0), 0) → c4
GR(s(z0), s(z1)) → c5(GR(z0, z1))
P(0) → c6
P(s(z0)) → c7
S tuples:
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1), GR(z1, 0))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), z0, p(z1)), GR(z1, 0), P(z1))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0), P(z0))
GR(0, z0) → c3
GR(s(z0), 0) → c4
GR(s(z0), s(z1)) → c5(GR(z0, z1))
P(0) → c6
P(s(z0)) → c7
K tuples:none
Defined Rule Symbols:
cond1, cond2, gr, p
Defined Pair Symbols:
COND1, COND2, GR, P
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
P(s(z0)) → c7
GR(0, z0) → c3
GR(s(z0), 0) → c4
P(0) → c6
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond1(true, z0, z1) → cond2(gr(z1, 0), z0, z1)
cond2(true, z0, z1) → cond2(gr(z1, 0), z0, p(z1))
cond2(false, z0, z1) → cond1(gr(z0, 0), p(z0), z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1), GR(z1, 0))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), z0, p(z1)), GR(z1, 0), P(z1))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0), P(z0))
GR(s(z0), s(z1)) → c5(GR(z0, z1))
S tuples:
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1), GR(z1, 0))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), z0, p(z1)), GR(z1, 0), P(z1))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0), P(z0))
GR(s(z0), s(z1)) → c5(GR(z0, z1))
K tuples:none
Defined Rule Symbols:
cond1, cond2, gr, p
Defined Pair Symbols:
COND1, COND2, GR
Compound Symbols:
c, c1, c2, c5
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 5 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond1(true, z0, z1) → cond2(gr(z1, 0), z0, z1)
cond2(true, z0, z1) → cond2(gr(z1, 0), z0, p(z1))
cond2(false, z0, z1) → cond1(gr(z0, 0), p(z0), z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), z0, p(z1)))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
S tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), z0, p(z1)))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
K tuples:none
Defined Rule Symbols:
cond1, cond2, gr, p
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c1, c2
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
cond1(true, z0, z1) → cond2(gr(z1, 0), z0, z1)
cond2(true, z0, z1) → cond2(gr(z1, 0), z0, p(z1))
cond2(false, z0, z1) → cond1(gr(z0, 0), p(z0), z1)
gr(s(z0), s(z1)) → gr(z0, z1)
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), z0, p(z1)))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
S tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), z0, p(z1)))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
K tuples:none
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c1, c2
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GR(s(z0), s(z1)) → c5(GR(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), z0, p(z1)))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = 0
POL(COND2(x1, x2, x3)) = 0
POL(GR(x1, x2)) = [2]x2
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = 0
POL(s(x1)) = [1] + x1
POL(true) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), z0, p(z1)))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
S tuples:
COND1(true, z0, z1) → c(COND2(gr(z1, 0), z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), z0, p(z1)))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c1, c2
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND1(
true,
z0,
z1) →
c(
COND2(
gr(
z1,
0),
z0,
z1)) by
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), z0, p(z1)))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
S tuples:
COND2(true, z0, z1) → c1(COND2(gr(z1, 0), z0, p(z1)))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND2, COND1
Compound Symbols:
c5, c1, c2, c
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
z0,
z1) →
c1(
COND2(
gr(
z1,
0),
z0,
p(
z1))) by
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
S tuples:
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND2, COND1
Compound Symbols:
c5, c2, c, c1
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
We considered the (Usable) Rules:
p(0) → 0
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x3
POL(COND2(x1, x2, x3)) = x3
POL(GR(x1, x2)) = x2
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
S tuples:
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND2, COND1
Compound Symbols:
c5, c2, c, c1
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
We considered the (Usable) Rules:
gr(0, z0) → false
p(0) → 0
p(s(z0)) → z0
gr(s(z0), 0) → true
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = [2]x3 + [2]x32
POL(COND2(x1, x2, x3)) = [2]x32 + [2]x1·x3
POL(GR(x1, x2)) = [2]x22
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(false) = [1]
POL(gr(x1, x2)) = [1]
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
S tuples:
COND2(false, z0, z1) → c2(COND1(gr(z0, 0), p(z0), z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND2, COND1
Compound Symbols:
c5, c2, c, c1
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
false,
z0,
z1) →
c2(
COND1(
gr(
z0,
0),
p(
z0),
z1)) by
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, 0, x1) → c2(COND1(false, p(0), x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, 0, x1) → c2(COND1(false, p(0), x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, 0, x1) → c2(COND1(false, p(0), x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c1, c2
(21) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND2(false, 0, x1) → c2(COND1(false, p(0), x1))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c1, c2
(23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
We considered the (Usable) Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x1
POL(COND2(x1, x2, x3)) = [1]
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = x1
POL(p(x1)) = 0
POL(s(x1)) = [1]
POL(true) = [1]
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c1, c2
(25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
We considered the (Usable) Rules:
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x2
POL(COND2(x1, x2, x3)) = x2
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, x0, 0) → c1(COND2(gr(0, 0), x0, 0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c1, c2
(27) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
x0,
0) →
c1(
COND2(
gr(
0,
0),
x0,
0)) by
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c1, c2
(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
x0,
s(
z0)) →
c1(
COND2(
gr(
s(
z0),
0),
x0,
z0)) by
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, x0, 0) → c1(COND2(false, x0, p(0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c1, c2
(31) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
x0,
0) →
c1(
COND2(
false,
x0,
p(
0))) by
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c1, c2
(33) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
p(0) → 0
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
gr(0, z0) → false
gr(s(z0), 0) → true
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, p(s(z0))))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
Defined Rule Symbols:
p, gr
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c1, c2
(35) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
true,
x0,
s(
z0)) →
c1(
COND2(
true,
x0,
p(
s(
z0)))) by
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
gr(0, z0) → false
gr(s(z0), 0) → true
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
Defined Rule Symbols:
p, gr
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c2, c1
(37) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x3
POL(COND2(x1, x2, x3)) = x3
POL(GR(x1, x2)) = x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = 0
POL(s(x1)) = [1] + x1
POL(true) = 0
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
gr(0, z0) → false
gr(s(z0), 0) → true
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
Defined Rule Symbols:
p, gr
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c2, c1
(39) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
gr(0, z0) → false
gr(s(z0), 0) → true
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
Defined Rule Symbols:
p, gr
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c2, c1
(41) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
false,
0,
x1) →
c2(
COND1(
gr(
0,
0),
0,
x1)) by
COND2(false, 0, x0) → c2(COND1(false, 0, x0))
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
gr(0, z0) → false
gr(s(z0), 0) → true
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(false, 0, x0) → c2(COND1(false, 0, x0))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND2(true, x0, s(z0)) → c1(COND2(gr(s(z0), 0), x0, z0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, 0, x1) → c2(COND1(gr(0, 0), 0, x1))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
Defined Rule Symbols:
p, gr
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c2, c1
(43) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND2(false, 0, x0) → c2(COND1(false, 0, x0))
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
gr(0, z0) → false
gr(s(z0), 0) → true
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
Defined Rule Symbols:
p, gr
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c2, c1
(45) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
gr(0, z0) → false
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c2, c1
(47) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
false,
s(
z0),
x1) →
c2(
COND1(
gr(
s(
z0),
0),
z0,
x1)) by
COND2(false, s(z0), x1) → c2(COND1(true, z0, x1))
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), x1) → c2(COND1(true, z0, x1))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c2, c1
(49) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
gr(s(z0), 0) → true
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), x1) → c2(COND1(true, z0, x1))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(z0), x1) → c2(COND1(true, p(s(z0)), x1))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
Defined Rule Symbols:
p
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c2, c1
(51) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND2(
false,
s(
z0),
x1) →
c2(
COND1(
true,
p(
s(
z0)),
x1)) by
COND2(false, s(z0), x1) → c2(COND1(true, z0, x1))
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), x1) → c2(COND1(true, z0, x1))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(z0), x1) → c2(COND1(true, z0, x1))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
Defined Rule Symbols:
p
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c1, c2
(53) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
p(s(z0)) → z0
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), x1) → c2(COND1(true, z0, x1))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(z0), x1) → c2(COND1(true, z0, x1))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
Defined Rule Symbols:none
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c1, c2
(55) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND2(false, s(z0), x1) → c2(COND1(true, z0, x1))
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), x1) → c2(COND1(true, z0, x1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND1(x1, x2, x3)) = x2
POL(COND2(x1, x2, x3)) = x2
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(false) = 0
POL(s(x1)) = [1] + x1
POL(true) = 0
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(false, s(z0), x1) → c2(COND1(true, z0, x1))
S tuples:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
K tuples:
GR(s(z0), s(z1)) → c5(GR(z0, z1))
COND1(true, x0, s(z0)) → c(COND2(true, x0, s(z0)))
COND2(false, s(z0), x1) → c2(COND1(gr(s(z0), 0), z0, x1))
COND2(true, x0, s(z0)) → c1(COND2(true, x0, z0))
COND2(true, x0, 0) → c1(COND2(false, x0, 0))
COND2(false, s(z0), x1) → c2(COND1(true, z0, x1))
Defined Rule Symbols:none
Defined Pair Symbols:
GR, COND1, COND2
Compound Symbols:
c5, c, c1, c2
(57) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
COND1(true, x0, 0) → c(COND2(false, x0, 0))
COND2(false, s(z0), x1) → c2(COND1(true, z0, x1))
Now S is empty
(58) BOUNDS(1, 1)