* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: add(0(),x) -> x add(s(x),y) -> s(add(x,y)) cond1(true(),x,y,z) -> cond2(gr(x,0()),x,y,z) cond2(false(),x,y,z) -> cond3(gr(y,0()),x,y,z) cond2(true(),x,y,z) -> cond1(gr(add(x,y),z),p(x),y,z) cond3(false(),x,y,z) -> cond1(gr(add(x,y),z),x,y,z) cond3(true(),x,y,z) -> cond1(gr(add(x,y),z),x,p(y),z) gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {add/2,cond1/4,cond2/4,cond3/4,gr/2,p/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {add,cond1,cond2,cond3,gr,p} and constructors {0,false,s ,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: add(0(),x) -> x add(s(x),y) -> s(add(x,y)) cond1(true(),x,y,z) -> cond2(gr(x,0()),x,y,z) cond2(false(),x,y,z) -> cond3(gr(y,0()),x,y,z) cond2(true(),x,y,z) -> cond1(gr(add(x,y),z),p(x),y,z) cond3(false(),x,y,z) -> cond1(gr(add(x,y),z),x,y,z) cond3(true(),x,y,z) -> cond1(gr(add(x,y),z),x,p(y),z) gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) p(0()) -> 0() p(s(x)) -> x - Signature: {add/2,cond1/4,cond2/4,cond3/4,gr/2,p/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {add,cond1,cond2,cond3,gr,p} and constructors {0,false,s ,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: add(x,y){x -> s(x)} = add(s(x),y) ->^+ s(add(x,y)) = C[add(x,y) = add(x,y){}] WORST_CASE(Omega(n^1),?)