* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            cond1(true(),x,y) -> cond2(gr(x,y),x,y)
            cond2(false(),x,y) -> cond1(neq(x,0()),p(x),y)
            cond2(true(),x,y) -> cond1(neq(x,0()),y,y)
            gr(0(),x) -> false()
            gr(s(x),0()) -> true()
            gr(s(x),s(y)) -> gr(x,y)
            neq(0(),0()) -> false()
            neq(0(),s(x)) -> true()
            neq(s(x),0()) -> true()
            neq(s(x),s(y)) -> neq(x,y)
            p(0()) -> 0()
            p(s(x)) -> x
        - Signature:
            {cond1/3,cond2/3,gr/2,neq/2,p/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond1,cond2,gr,neq,p} and constructors {0,false,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            cond1(true(),x,y) -> cond2(gr(x,y),x,y)
            cond2(false(),x,y) -> cond1(neq(x,0()),p(x),y)
            cond2(true(),x,y) -> cond1(neq(x,0()),y,y)
            gr(0(),x) -> false()
            gr(s(x),0()) -> true()
            gr(s(x),s(y)) -> gr(x,y)
            neq(0(),0()) -> false()
            neq(0(),s(x)) -> true()
            neq(s(x),0()) -> true()
            neq(s(x),s(y)) -> neq(x,y)
            p(0()) -> 0()
            p(s(x)) -> x
        - Signature:
            {cond1/3,cond2/3,gr/2,neq/2,p/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond1,cond2,gr,neq,p} and constructors {0,false,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          gr(x,y){x -> s(x),y -> s(y)} =
            gr(s(x),s(y)) ->^+ gr(x,y)
              = C[gr(x,y) = gr(x,y){}]

WORST_CASE(Omega(n^1),?)